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ABSTRACT

In the full-orbit particle simulations of energetic particle transport in plasmas, the plasma turbulence is typically
described as a homogeneous superposition of linear Fourier modes. The turbulence evolution is, however, typically
a nonlinear process, and, particularly in the heliospheric context, the solar wind plasma is inhomogeneous due to
the transient structures, as observed by remote and in situ measurements. In this work, we study the effects of the
inhomogeneities on energetic particle transport by using spatially distributed, superposed turbulence envelopes. We
find that the cross-field transport is significantly reduced, when compared to the results obtained with homogeneous
turbulence. The reduction can reach an order of magnitude when the enveloping breaks the wave phase coherence
along the mean magnetic field direction.
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1. INTRODUCTION

When studying solar energetic particle (SEP) events, it is
crucial to uncover the propagation of the particles in the inter-
planetary medium. Energetic particles related to solar eruptions
are observed at a large range of latitudes and longitudes (e.g.,
Dalla et al. 2003; Liu et al. 2011), and without understanding
the propagation of particles across the mean magnetic field, it is
difficult to determine the extent of the acceleration region and
its relation to the physics of the eruption.

The modeling of cosmic-ray transport in turbulent plasmas
is typically based on the diffusion–convection equation (Parker
1965) and the quasilinear approach incorporating pitch angle
diffusion description, with the cross-field propagation described
as field line random walk (Jokipii 1966). The modeling of pitch
angle evolution has evolved to include adiabatic focusing (Earl
1976), adiabatic deceleration (Ruffolo 1995; Kocharov et al.
1998), and structured solar wind (Kocharov et al. 2009). The
application of these models to obtaining the SEP injection close
to the Sun from the observations at 1 AU mostly concentrated
on the particle propagation along the mean magnetic field (e.g.,
Laitinen et al. 2000; Dröge 2003). Only recently has the cross-
field propagation been included into the SEP studies (e.g., Zhang
et al. 2009; Dröge et al. 2010; He et al. 2011).

A wide range of values for the perpendicular diffusion
coefficient has been reported. Studies of the transport of galactic
cosmic rays (e.g., Burger et al. 2000) and Jovian electrons
(Zhang et al. 2007 and references therein) give estimates of the
order of κ⊥/κ‖ = 0.01. On the other hand, Zhang et al. (2003)
report values of κ⊥/κ‖ = 0.25 in relation to protons originating
from a solar event, while Dwyer et al. (1997) find the ratio
to be of the order of unity for energetic particles observed in
association with corotating interaction regions.

The values of κ⊥/κ‖ obtained from observations are related
to different regions in the heliosphere, and possibly to different
properties of the turbulence, which poses a problem when com-
paring them with theoretical work. In recent years, the use of
full-orbit simulations of energetic particles in studying particle
propagation has gained attention. The benefit of this approach
is that the parameters defining the turbulence properties can
be explicitly prescribed. In addition, for the energetic parti-
cle propagation no a priori assumptions, such as the applica-
bility of the diffusion description, are required. The approach

has been used by Giacalone & Jokipii (1999), who obtained
κ⊥/κ‖ = 0.01–0.03, with the perpendicular diffusion coefficient
contradicting the quasilinear theory results of Jokipii (1966).
Qin et al. (2002) used the method to discover the subdiffusion
phase in the particle propagation perpendicular to the mean mag-
netic field, followed by subsequent recovery of diffusion. This
phenomenon has subsequently been modeled as interplay be-
tween parallel and perpendicular propagation effects (Matthaeus
et al. 2003). Thus, the full-orbit particle simulations have proved
to be a valuable tool when studying particle transport.

The full-orbit particle simulation results may depend, how-
ever, on the way the turbulent electric and magnetic fields are
described. A popular choice is to superpose Fourier modes on
a constant magnetic field (e.g., Giacalone & Jokipii 1999; Qin
2002; Qin et al. 2002; Zimbardo et al. 2006; Ruffolo et al. 2008),
or more recently, on a Parker spiral field (Tautz et al. 2011). In
this approach, however, the modes remain linear throughout the
simulation domain, while the heliospheric plasma is known to
evolve nonlinearly in addition to linear mode propagation (see,
e.g., Tu & Marsch 1995, for a review). Thus, the Fourier-mode
description is not consistent with the behavior of plasma turbu-
lence, and using the approach may result in inaccurate particle
diffusion coefficients. Some work exists on simulating parti-
cles in turbulent fields obtained by using MHD simulations,
where the nonlinear interactions are properly addressed (e.g.,
Beresnyak et al. 2011). However, such studies are limited by
computational requirements to a small range of scales and to
Cartesian geometries with constant background fields.

The assumption that the plasma turbulence is spatially ho-
mogeneous, while useful when comparing the simulations to
theoretical models, can also pose a problem when trying to
understand SEP observations. The heliospheric magnetic field
expands as a Parker spiral and may have a complicated struc-
ture (e.g., Parker 1958; Fisk 1996; Sternal et al. 2011). The
solar wind is permeated by transient structures, as shown by
in situ and remote-sensing observations (Rouillard et al. 2010a,
2010b), thus making it a spatio-temporally varying medium, in-
stead of a steady solar wind flow. Thus, for SEP analysis there is
a need to understand how such a structured plasma environment
influences energetic particle propagation.

In this work, we study the effect of structures in the turbu-
lence on energetic particle propagation by means of full-orbit
energetic particle simulations. We describe the turbulence as a
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superposition of localized, randomly distributed envelopes that
contain a sum of linear waves. For simplicity, the envelopes are
not limited in the direction perpendicular to the mean field, but
the variation takes place only along the mean field direction.
We introduce two different models to study the effects of the
structures. In the modulated wavefield model, only the ampli-
tude of the turbulence is modulated, with the individual Fourier
modes remaining coherent throughout the simulation domain.
In the random envelope model, the phases, wave normal direc-
tions, and polarizations of the modes are different in different
envelopes. This is done to mimic the nonlinear evolution of tur-
bulence being convected throughout the heliosphere. Of these
two models, the random envelope model better captures the in-
fluence of nonlinear interactions present in the heliospheric tur-
bulence. Comparing the results of the random envelope model
with those of the modulated wavefield model allows us to distin-
guish between the effects of amplitude modulation on one hand,
and the phase, wave normal, and polarization changes on the
other, as both effects are present in the random envelope model.

The turbulence is superposed on a constant background mag-
netic field. While such a background field limits the applicability
of the model results to the heliospheric environment, it is useful
as a first approach in isolating the energetic particle transport ef-
fects due to the structured turbulence. The effects of a spatially
non-uniform heliospheric magnetic field, and of fully three-
dimensional structures, will be the subject of future studies.

In Section 2, we introduce our description of the structured
turbulence and our approach to obtain the energetic particle
diffusion coefficients. In Section 3, we present the turbulence
characteristics, and the full-orbit particle simulations and the
derived diffusion coefficients, and study their variation with en-
velope characteristics, which can be considered as a measure
for the structure size in the turbulent plasmas. We discuss the
implications of the results and draw our conclusions in Section 4.

2. MODEL

2.1. Turbulence Model

The turbulence model consists of envelopes containing fluc-
tuating magnetic field given by a sum of infinite plane waves.
The magnetic field is defined as

B = B0êz + δB(x, y, z),

where the background magnetic field is uniform and constant,
with B0 = 5 nT, consistent with the magnetic field at 1 AU. The
fluctuating field δB is based on the homogeneous turbulence
model of Giacalone & Jokipii (1999), and is defined as a sum
of N modes,

δB(x, y, z) =
N∑

n=1

A(kn)ξ̂n exp{i(knz
′
n + βn)}. (1)

Here ξ̂n is the polarization vector,

ξ̂n = cos αnx̂′
n + i sin αnŷ′

n.

The unprimed coordinate system has the background magnetic
field along the z-axis, and the primed coordinate system is
obtained from the unprimed through rotation characterized
by the spherical coordinate system angles θn and φn of the
wave vector kn, as defined in Giacalone & Jokipii (1999). The

fluctuation amplitude A(kn) is given by a power-law spectrum

A2(kn) = B2
1

Gn∑N
n=1 Gn

, G(kn) = ΔVn

1 + (knLc)γ
,

where B2
1 is the variance of the magnetic field, Lc is the

spectrum’s turnover scale, γ is the spectral index, and ΔVn

specifies the volume element in k-space that the discrete mode
kn represents. For the turnover scale, also called the correlation
length, we use Lc = 2.15 r�, where r� is the solar radius.

In our simulations, we use the composite spectrum model,
which is composed of a sum of slab and two-dimensional (2D)
turbulence (Gray et al. 1996). For the slab component, kn is
directed along the background field, which is parallel to the
z-axis, and the polarization vector lies in the xy-plane, with a
random polarization angle αn. For the 2D-component, kn lies
in the xy-plane. The polarization vector is also in the xy-plane,
with αn = π/2, perpendicular to kn, to satisfy ∇ · B = 0. The
azimuthal angle φn and the random phase βn are chosen from a
uniform random distribution.

The slab and 2D spectra have the same turnover scale, and
the wavemodes are generated for the same wavenumbers kn.
The wavenumbers are logarithmically spaced between 2π/1 AU
and 2π/10−4 AU. The spectral indices for the slab and 2D
components are 5/3 and 8/3, respectively, and the factor ΔVn is
Δkn for the slab component and 2πknΔkn for the 2D component.
The total turbulence energy is divided between the slab and 2D
components with a ratio of 20%:80%, following Bieber et al.
(1996).

2.2. Turbulence Envelope Model

We envelope the infinite plane waves, given by Equation (1),
into Np wave packets of length Lp, randomly distributed in the
simulation box. The envelopes are of cosine shape, given by

Ai(z) = 1

2

[
1 − cos

(
2π

z − zi

Lp

)]
·

[Θ{z − zi} − Θ{z − (zi + Lp)}], (2)

with zi being the starting point of the envelope, and the
Heaviside functions Θ{z} limit each envelope to the range
zi < z < zi + Lp. The magnetic field in these envelopes
remains divergence-free, as the envelope amplitude changes
only in the direction perpendicular to the polarization vectors ξ̂n.
The overall turbulent magnetic field is the sum of the magnetic
field in the envelopes,

δB(x, y, z) =
Np∑
i=1

Ai(z) δBi , (3)

where δBi is given by Equation (1). The distribution and
summing of the envelopes is shown in the bottom panels of
Figure 1, where the gray-filled curves show the amplitudes of
each envelope, and the thick curve their sum.

The envelopes are spread randomly along the z-direction from
z = 0 to z = Lmax, where the length of the simulation volume
along the z-axis, Lmax, is chosen to be large enough that the
particles will remain in the volume for the duration of the simu-
lation. As the variation of the amplitudes takes place only in the
z-direction, there is no need to limit the volume in the xy-plane.
The number of the envelopes, Np, is determined by defining an
envelope density ρp = NpLp/Lmax, which describes the filling
of the simulation space with the turbulent envelopes.
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Figure 1. Top panel: the sum of envelope amplitudes for parameters ρp = 16 and Lp = 4Lc (solid curve), and ρp = 4 and Lp = 1Lc (dotted curve), in the modulated
wavefield model. The horizontal dashed line represents the homogeneous model. Here, the energy density scaling factor 4/ρ2 has been used. Bottom panels: the curves
filled with gray-scale colors show the individual envelopes with Lp = Lc . The thick curve represents the sum of the envelopes.

We consider two different models for δBi . In the wavefield
modulation model, the set of angles βn, φn, and αn are the
same for each envelope, and thus the enveloping only modulates
the turbulent field described by Equation (1). In the random
envelope model, each envelope i has a unique set of angles βni,
φni, and αni, mimicking the spatial evolution of the turbulence
phases and wavenumbers.

2.3. Turbulence Energy Density

To compare the turbulent fields and their effects on SEP
propagation, we scale the fluctuation amplitudes so that the
average energy density in the fluctuating field is independent
of the enveloping parameters. As the energy density varies
considerably in the enveloped cases, we calculate the energy
density over a large spatial domain. The average energy density
in a volume of cross-section S and height Lmax is given by

U = 1

8π

1

S Lmax

∫ ∫
δB2dz dS = 1

8π
〈δB2〉,

where 〈δB2〉 is the variance of the fluctuations over the volume.
The energy density for the enveloped turbulence is then

Uenv = 1

8πLmax

∫ Lmax

0

Np∑
i=1

Np∑
j=1

AiAj δBi · δBj dz. (4)

For the random envelope model, this integral can be esti-
mated analytically (see the Appendix). For the wavefield mod-
ulation model, the scaling factor is obtained through numerical
integration.

2.4. Energetic Particle Simulations

In order to study charged particle propagation in turbulent
magnetic fields, we integrate the fully relativistic equation of
motion of energetic protons using the simulation code by Dalla
& Browning (2005). As the fluctuating field is magnetostatic,
the electric field is zero. For the integration, we use the
Bulirsh–Stoer method (Press et al. 1993). The method uses
adaptive timestepping to control the accuracy by limiting the
error between consecutive steps to a given tolerance. We use the
tolerance of 10−9, which ensures the conservation of energy to
within 10−6 in our simulations. The particles’ initial velocity
distribution is isotropic and monoenergetic, and their initial
positions are selected randomly in a region 40 times the size of
the turbulence correlation scale, in order to minimize the effects
of the local magnetic field. For each set of turbulence and particle
parameters, we run the simulations for 10 field realizations, with
2048 particles for each simulation. In the turbulence realizations,
we typically use N = 128 Fourier modes, with validation runs
using N = 1024 modes to verify that the results are not altered
by the number of modes.
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Figure 2. Field lines in the homogeneous (top panel), modulated wavefield (middle panel), and the random envelope turbulence model (bottom panel). In the latter
two models, the envelope length is Lp = 4Lc and density ρp = 4.

The diffusion coefficient is obtained from the definition

κζζ = 〈Δζ 2〉
2t

, ζ = x, y, z (5)

(e.g., Giacalone & Jokipii 1999), where the square of the
displacement, Δζ 2, is averaged over the simulated particles.
The diffusion coefficients are calculated separately for each
field realization. In Figures 4–6, κpar refers to κzz, whereas κperp
is obtained as the mean of κxx and κyy .

The diffusion coefficients experience typically super- and
subdiffusive phases, after which they settle to constant values,
which we use in this study. In practice, we continue the
simulations to ∼100 parallel diffusion times in each run. In
addition to this, we require that the particles be spread over a
large number of envelopes. For this, we require that the FWHM
of the distribution, as calculated from the analytic solution to the
diffusion equation (e.g., Giacalone & Jokipii 1999), 4

√
κzzt ln 2,

is at least 40Lp. This is done in order to reduce the statistical
errors caused by the local differences between different field
realizations.

We have reproduced some of the simulations done by
Giacalone & Jokipii (1999), and found good agreement with
their example run presented in their Appendix A. We found,
however, that the agreement between their experiments one and
three is somewhat dependent on the selection of simulation do-
main size and fitting parameters when using experiment one. For
this reason, the results presented in this study may differ some-

what from their results, as they use experiment one for their re-
sults, whereas our method corresponds to their experiment three.

The diffusion of the particles can be caused by field line me-
andering and by the drifts of the particles relative to the field
lines. However, these processes are strongly coupled. Even a
small drift of a particle from its original field line can result in
large deviation from the original field line, depending on the
local structure of the magnetic field. For this reason, separating
the contributions of the two effects is not trivial. In this study,
we do not attempt to make this distinction, but consider the
diffusion as a compound effect of the two processes.

3. RESULTS

In this work, we study the effect of turbulent structures
on energetic particle transport by using the turbulence model
described in Section 2, varying the enveloping parameters. For
the envelope density ρp we have chosen to use values 1, 4, and
16, to represent tenuous to dense enveloping. The length of the
envelope, Lp, is chosen to have values Lc, 4 Lc, and 16 Lc. In this
section, we first study how the enveloping affects the turbulence,
and then how the particle propagation is affected.

3.1. Enveloped Turbulent Field

To understand how the enveloping affects the turbulence, it
is useful to compare the behavior of the envelope amplitudes
to the homogeneous turbulence. In the top panel of Figure 1
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Figure 3. Power spectrum of the turbulence using the homogeneous (top panel), modulated wavefield (middle panel), and the random envelope turbulence model
(bottom panel). In the latter two models, the envelope length is Lp = 4Lc and density ρp = 4.

we plot the sum of the envelope amplitudes for the wavefield
modulation model, for two combinations of ρp and Lp. As can
be seen, the high-density enveloping, with ρp = 16, results in
smaller deviations from the homogeneous model (the horizontal
dashed curve) than the intermediate density (ρp = 4). Thus,
the envelope density describes the strength of the deviation
of the mean amplitude from a constant value. The tenuous
enveloping, with ρp = 1 (bottom right panel of Figure 1),
implying an average of one envelope at a given position, results
in regions with no turbulence at all and regions with overlapping
envelopes. While such a situation is not necessarily realistic,
it is taken as an extreme of the parameterization and can, in
later studies, be more realistically supplemented with some
small underlying homogeneous turbulence. At the large density
limit, the wavefield modulation approaches the homogeneous
turbulence description.

We can also visualize how the field line wandering is
affected by the enveloping. Figure 2 shows the field lines for
homogeneous turbulence (top panel), the modulated wavefield
(middle panel), and the random envelope model (bottom panel),
for parameters Lp = 4Lc and ρp = 4. The field lines are
initiated from an area of 10Lc × 10Lc at z = 0. The most
striking difference can be seen in the reduced spreading of the
field lines in the case of random enveloping (bottom panel of
Figure 2). There are also some qualitative differences between
the homogeneous and modulated wavefield models (the top and

middle panels). However, they cannot be quantified on the basis
of one realization, and we will study their difference by using
the energetic particle simulations in Section 3.2.

It is also important to determine how the turbulence spectrum
is affected by enveloping. This can be seen in Figure 3, where
we present 2D Fourier transforms of the turbulence for the
homogeneous (top panel), the modulated wavefield (middle
panel) and the random envelope turbulence model (bottom
panel). We show the spectrum for waves with the k along the
mean magnetic field (solid line), along an axis perpendicular
to it (dashed line), and along the direction 45◦ away from the
mean magnetic field (dotted line). It can be seen that for the
homogeneous turbulence the wave power resides in the parallel
and perpendicular components only, whereas the enveloping
effectively isotropizes the turbulence at scales larger than the
envelope length (Lp = 4Lc). In the random envelope model,
the perpendicular component of the spectrum (the dashed line
in the bottom panel of Figure 3) is reduced compared to the two
other models. This may have an influence on energetic particle
transport.

It should be noted that in this section we have presented
the behavior of the amplitudes, field lines and spectra for only
one realization, and one region. Thus, the presented behavior
can only be considered as qualitative, as localized structures
are apparent even in homogeneous turbulence models (e.g.,
Chuychai et al. 2007).

5



The Astrophysical Journal, 749:103 (9pp), 2012 April 20 Laitinen, Dalla, & Kelly

Figure 4. Parallel diffusion coefficient as a function of particle energy, for the modulated wavefield model (top panel) and for the random envelope model (bottom
panel), for ρp = 4 and four envelope lengths. The solid line represents the result for homogeneous turbulence. The turbulence amplitude is B2

1 /B2
0 = 1.

3.2. Energetic Particle Propagation

To study the influence of enveloping the turbulence on en-
ergetic particle propagation, we have simulated several differ-
ent scenarios, varying the particle energy and the turbulence
properties. In Figure 4, we show the parallel diffusion coeffi-
cients obtained from these runs, for protons of energies 1 MeV,
10 MeV, and 100 MeV. The points represent the mean, and the
error limits the standard deviation of the diffusion coefficients,
obtained from 10 turbulence realizations. The top panel shows
the modulated wavefield results and the bottom one those of the
random envelope model.

In both panels of Figure 4, the solid black line depicts the
diffusion coefficient obtained from runs with homogeneous
turbulence, given by Equation (1), which are consistent with
the results of Giacalone & Jokipii (1999). The non-solid
lines show the parallel diffusion coefficient for enveloped
turbulence, with intermediate envelope density (ρp = 4) and
three envelope lengths. The enveloping reduces the diffusion
coefficients somewhat for the modulated wavefield model up to
factor of two compared to the homogeneous turbulence model
(top panel) and the random envelope model up to factor of three
(bottom panel), and has a dependence on the envelope length.

For the perpendicular diffusion coefficient, the effect of the
enveloping is more varied. In Figure 5, we show the variation of

the perpendicular diffusion coefficient as a function of energy for
the same parameters as in Figure 4. In the modulated wavefield
model, the perpendicular diffusion coefficient is reduced by a
factor of two compared to the homogeneous turbulence result
and is independent of the envelope length. For the random
envelope model, the reduction is strongly dependent on the
envelope length, and the reduction in the diffusion coefficient
reaches a factor of eight for short envelopes.

The effect of the enveloping parameters can be seen in more
detail in Figure 6, where we show the perpendicular diffusion
coefficient for three envelope densities, as a function of the
envelope length. For the modulated wavefield model (top panel),
there is no variation of the perpendicular diffusion with the
envelope length, within statistical errors of our study. There
is a clear dependence on the envelope density, however, with
a reduction of the diffusion coefficient up to factor of three
compared to the homogeneous turbulence result, when the
turbulence enveloping is tenuous (ρp = 1 in the top panel
of Figure 6). Higher envelope densities result in the diffusion
coefficient approaching the homogeneous turbulence values.

When the phases, propagation directions, and polarizations
are different from one envelope to another, the cross-field
particle propagation depends considerably on both enveloping
parameters (bottom panel of Figure 6). For a high-density,
long-envelope packeting, the limit of homogeneous turbulence
is again obtained. When the envelopes are shortened and
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Figure 5. Perpendicular diffusion coefficient as a function of energy, for the modulated wavefield model (top panel) and for the random envelope model (bottom
panel). The turbulence amplitude is B2

1 /B2
0 = 1.

the envelope density is reduced, however, the reduction of
the perpendicular diffusion coefficient is nearly an order of
magnitude.

4. DISCUSSION AND CONCLUSIONS

In this work, we have studied the effect of structured tur-
bulence, as opposed to homogeneous turbulence, on energetic
particle transport. We find that in the structured turbulence the
particle propagation is significantly inhibited, as compared to
the propagation in homogeneous turbulence of similar mean
energy density of the turbulent magnetic field.

The parallel diffusion can be seen to be affected strongly only
when the inhomogeneities are of small scales (the dotted curve in
Figure 4). The reduction of the coefficient also has a significant
energy dependence, with higher-energy particles being affected
more strongly. This may be related to the increasing resonant
scales of the particles (with Larmor radius of 0.4 r� for 100 MeV
protons in a 5 nT magnetic field).

The effect of the structuring of the turbulence on the cross-
field propagation depends strongly on how the enveloping is
performed. In the modulated wavefield model, where only the
amplitude of the turbulence is modified, the cross-field propaga-
tion is sensitive only to the envelope density. For short envelopes,
it appears that the effect of reduced field line wandering in the re-
gions with small-amplitude turbulence is not fully compensated
by the increased wandering in the higher-amplitude regions, but

overall the cross-field propagation is inhibited. With the increase
of the envelope density, the variation of the turbulence ampli-
tudes approaches the homogeneous description (see Figure 1),
and the limit of cross-field propagation in the homogeneous tur-
bulence is approached with increasing envelope density, as can
be seen in the top panel of Figure 6.

For the random envelope model, however, the effect of the
enveloping to the cross-field propagation is more varied, and
stronger, and both the length and the density affect the perpen-
dicular diffusion coefficient. Thus, the loss of phase coherence
along the mean field direction, which is the basic difference
between the wavefield modulation and random envelope mod-
els, significantly affects the cross-field propagation of energetic
particles.

This effect can be understood qualitatively. Strong cross-
field wandering of a field line, as seen in the top panels of
Figure 2, can only take place due to persistent cross-field
disturbance with little or no dependence on the coordinate
along the background magnetic field. This is possible due to
the 2D component of the turbulence: a 2D wave has a constant
phase along the background magnetic field and the cross-field
direction perpendicular to the k-vector. In the homogeneous and
modulated wavefield model such waves are coherent throughout
the simulation region (subject to disturbances from other waves),
resulting in strong wandering of some field lines. In the
random envelope model, however, this coherence is broken, and
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Figure 6. Perpendicular diffusion coefficient as a function of the envelope length for the modulated wavefield model (top panel) and for the random envelope model
(bottom panel). The turbulence amplitude is B2

1 /B2
0 = 1 and the particle energy 10 MeV.

such wandering can remain coherent only when one envelope
dominates the others.

Such breaking of the behavior has natural justifications, par-
ticularly in the heliospheric context. As discussed in Section 1,
the heliospheric magnetic field, and thus the turbulence, has its
origins at the Sun, and the heliospheric plasmas are known to
be structured due to transient phenomena at the Sun. Thus, it
does not seem feasible that the evolving corona could produce
structures with infinite phase coherence into the heliospheric
magnetic fields.

The nonlinear evolution of turbulence also favors the evolu-
tion of the turbulence in a parallel direction. As waves propagate
outward from the Sun, they interact nonlinearly, resulting in a
cascade of energy between different scales (e.g., Tu & Marsch
1995). Although this energy cascade is very anisotropic, toward
small perpendicular scales, the parallel scales are also affected.
This can be understood through the concept of critical balance,
introduced by Goldreich & Sridhar (1995), where the turbulence
separated by the critical scale parallel to the mean field expe-
rience differing interactions due to the evolution of the coun-
terstreaming waves. This results in scale-dependent anisotropy
between the perpendicular and parallel scales of the turbulence,
which has been observed in the solar wind turbulence (Horbury
et al. 2008).

Overall, our results suggest that inhomogeneities within he-
liospheric plasmas and the nonlinear behavior of the turbulence

may significantly influence energetic particle transport. This has
significant implications on the studies of SEP origins and their
propagation in the heliospheric magnetic fields.

We acknowledge support from the UK Science and Technol-
ogy Facilities Council via standard grant ST/H002944/1 and
a PhD studentship. Access to the University of Central Lan-
cashire’s High Performance Computing Facility is gratefully
acknowledged.

APPENDIX

CALCULATION OF THE MEAN TURBULENCE
ENERGY DENSITY

For the random envelope model, the energy density given
by Equation (4) can be estimated analytically. As the magnetic
fields δBi within different envelopes are not correlated, we can
consider the integral over terms with i = j negligible. With this
approximation, the integral can be written in the form

Uenv = 1

8π

1

LmaxS

Np∑
i=1

∫ Lmax

0
δB2

i Ai(z)2 dz dS.

Using δB2(x, y, z) ≈ 〈δb2〉 on the scales where Ai changes
appreciably, and ignoring the envelopes that are only partly in

8



The Astrophysical Journal, 749:103 (9pp), 2012 April 20 Laitinen, Dalla, & Kelly

the integration region, the integral results in

Uenv = 3

8

Lp

Lmax
Uinf,

where Uinf is the energy density of the turbulence given
by Equation (1). Thus, the scaling factor for the enveloped
turbulence energy density is

Uinf∑
Np

Uenv
= 8

3

Lmax

NpLp

= 8

3ρp

.

The magnetic field amplitude is scaled by the square root of
this scaling factor. We have verified the validity of this estimate
through numerical integration of δB2.

For the wavefield modulation model, the amplitudes can
simply be added together, as the wave phases and polarizations
are the same in all envelopes. At high envelope density, the
sum approaches constant, thus the scaling factor for the energy
density is simply 4/ρ2

p. On the limit of low envelope density,
the envelopes do not overlap, resulting in the same expression
for the energy density as in the random envelope model, and the
scaling factor 8/(3ρp). However, as the envelope densities in this
study are in the intermediate range between these asymptotes,
we use numerical integration for determining the scaling factor
in the wavefield modulation model.
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