

Convection without the Mixing Length Parameter

Windermere, September 2016

Stefano Pasetto and Mark Cropper Mullard Space Science Lab, University College London

+ Cesare Chiosi, Emanuela Chosi, Achim Weiss, Eva Grebel

Rationale for replacing Mixing Length Theory

- The current approach for convection is Mixing Length Theory [Prandtl (1925), Böhm–Vitense (1958)]
- The universal applicability of the MLT is unproven and requires a calibration for each star
 ⇒ a self-consistent theory will be a significant advance (and overdue)
- The correct treatment of convection is critical for stellar models throughout the H-R diagram
 ⇒ affects every aspect of stellar and galactic evolution
- Advances in asteroseismology have allowed the internal structure of stars to be measured directly with increasing accuracy
 ⇒ allows detailed confrontation with stellar models
- Advent of scale and accuracy of *Gaia* data requires stellar models of greater fidelity to fully utilise it
 - e.g. location of red giant tracks depends sensitively on MLT parameter

log P

Convection Theory: stability criteria

Energy transfer by convection in the classical treatment is a linear "stability study" against nonspherical perturbations Assuming that dr is small and $p_{star}+dp_{star}=p_{sur}+dp_{sur}$ leads to the Schwarzschild/Ledoux criterion for instability log ρ *i.e.* convection. S: stable gradient U: unstable gradient ρ $\rho_{2,u}$ ρe $\rho_{2,s}$ pressure at the credit: Onno Pols surface of the P_2 P_1

Mark Cropper – 15 September 2016

(3 of 18)

 $\frac{d\log T}{d\log P}$

 $\frac{d\ln T}{d\ln P}$

Mixing Length Theory

- The formulation is set in terms of:
 - $\varphi_{\rm rad}$ the radiative energy flux
 - $\varphi_{\rm cnv}$ the convective energy flux
 - ∇ the *stellar* temperature gradient with respect to pressure
 - ∇_{e} the *element* temperature gradient with respect to pressure
- With the <u>assumption</u> that $l_m \equiv \Lambda_m h_P$ where
 - l_m is the mean free path of a convective element
 - h_P is the distance scale of the pressure stratification
 - Λ_m is the proportionality constant (the Mixing Length Parameter)

the system of equations
$$\varphi_{rad|cnd} = \frac{4ac}{3} \frac{T^4}{\kappa h_P \rho} \nabla$$

 $\varphi_{rad|cnd} + \varphi_{cnv} = \frac{4ac}{3} \frac{T^4}{\kappa h_P \rho} \nabla_{rad}$
 $\bar{v}^2 = g\delta (\nabla - \nabla_e) \frac{l_m^2}{8h_P}$
 $\varphi_{cnv} = \rho c_P T \sqrt{g\delta} \frac{l_m^2}{4\sqrt{2}} h_P^{-3/2} (\nabla - \nabla_e)^{3/2}$
 $\frac{\nabla_e - \nabla_{ad}}{\nabla - \nabla_e} = \frac{6acT^3}{\kappa \rho^2 c_P l_m \bar{v}},$ can be solved

A self-consistent theory: two papers

- Pasetto et al (2014) MNRAS, <u>445</u>, 3592
 - Paper 1 formulates the problem in the reference frame of the moving convective element
 - This allows the identification of a self-consistent additional constraint which can be used to close the system of equations without the external imposition of a mixing-length parameter
 - A comparison is made of the derived parameters (e.g., sound speed) in the Sun (where the Mixing Length Theory is calibrated)
- Pasetto et al (2016) MNRAS, <u>459</u>, 3182
 - Paper 2 presents the first stellar models using the non-MLT treatment
 - Evolutionary tracks are derived and compared to MLT-derived tracks
 - Derived internal parameters are compared between the two theories and agreement is found to be satisfactory

Self-consistent Theory: stability criterion

•

• The new treatment is in the co-moving frame of the bubble

co-moving coordinates + the concept of the "velocity potential" The instability criterion now translates to a v criterion that $\frac{v}{\dot{\xi}_e} \ll 1$

i.e. the new instability criterion is a <u>velocity</u> criterion that the expansion speed of the bubble is greater than the speed of the bubble in the star

Relation between blob size and time

• the unstable expansion is in terms of hyper-geometric functions which is <u>quadratic</u> in time in the leading term

Formulation

• Pasetto et al (2014) derives 6 equations in 6 unknowns:

$$\begin{aligned} \varphi_{\rm rad/cnd} &= \frac{4ac}{3} \frac{T^4}{\kappa h_P \rho} \nabla \\ \varphi_{\rm rad/cnd} + \varphi_{\rm cnv} &= \frac{4ac}{3} \frac{T^4}{\kappa h_P \rho} \nabla_{\rm rad} \\ \bar{v}^2 &= \frac{\nabla - \nabla_e - \frac{\varphi}{\delta} \nabla_\mu}{\frac{3h_P}{2\delta \bar{v} \tau} + \left(\nabla_e + 2\nabla - \frac{\varphi}{2\delta} \nabla_\mu\right)} \bar{\xi}_e g \\ \varphi_{\rm cnv} &= \rho c_P T \left(\nabla - \nabla_e\right) \frac{\bar{v}^2 \tau}{h_P} \\ \frac{\nabla_e - \nabla_{\rm ad}}{\nabla - \nabla_e} &= \frac{4acT^3}{\kappa \rho^2 c_P} \frac{\tau}{\bar{\xi}_e^2} \\ \bar{\xi}_e &= \frac{g}{4} \frac{\nabla - \nabla_e - \frac{\varphi}{\delta} \nabla_\mu}{\frac{3h_P}{2\delta \bar{v} \tau} + \left(\nabla_e + 2\nabla - \frac{\varphi}{2\delta} \nabla_\mu\right)} \bar{\chi}, \end{aligned}$$

• The two new unknowns are:

 $\overline{\xi}_e$ the mean size of the convective element and \overline{v} the mean velocity

Solving the system of equations

• After substitutions and definition of new variables, the 6 equations reduce to the following:

$$\begin{split} \frac{Y^2}{(W-\eta)\left(\eta-Y\right)} &= \frac{1}{3}\frac{\bar{\chi}}{\tau^2} \\ \text{where:} \\ & W \equiv \nabla_{\mathrm{rad}} - \nabla_{\mathrm{ad}} > 0, \\ & \eta \equiv \nabla - \nabla_{\mathrm{ad}}, \\ & Y \equiv \nabla - \nabla_{\mathrm{e}}, \\ & \chi \equiv \frac{\xi_e}{\xi_0} \end{split}$$
but, recall $\chi \equiv \frac{\xi_e}{\xi_0} \propto \tau^2$ from previous graph, so $\frac{\bar{\chi}}{\tau^2}$ = constant

[▲]UCI

Outcome of the reduction of dimensionality

Another important consequence

• The treatment leads to a non-hydrostatic equilibrium theory, hence non-hydrostatic equilibrium models of atmospheres

 This is a fundamental advance on the MLT where equilibrium is assumed to be reached at the end of the bubble movement

Results (1): outer convective layers

Mark Cropper - 15 September 2016

(12 of 18)

Results (2): outer convective layers

 $2M_{\odot}$ RGB star log L/L_{\odot} =2.598, log T_{eff} =3.593 Bertelli et al. (2008)

black: MLT ($\Lambda = 1.68$) red: this work

Outer convective layers: comparison

- For Solar model:
 - good agreement for convective and radiative fluxes throughout
 - temperature gradients are in good agreement except for surface layers

Reason: treatment incomplete at the boundary

- For $2M_{\odot}$ model:
 - good agreement for convective fluxes
 - divergence to lower boundary for radiative fluxes
 Reason: these solutions are not constrained to match the inner solution at the transition layer
 - temperature gradients as for Solar model
- To constrain the inner solution, need to calculate full stellar models
- For these full calculations, Mixing Length Theory used for the interiors

Results 3: Stellar models

Results 3: Stellar models

Note: away from the well-calibrated cases, care should be exercised in which approach is the considered to be the reference.

Full stellar models: Overshooting

- The new theory does not yet include overshooting
- However, it derives the acceleration acquired by convective elements under the action of the buoyancy force in presence of the inertia of the displaced fluid and gravity.
- Therefore, it is <u>also</u> best suited to describe convective overshooting
- Extension of the atmospheric modelling to include overshooting is in preparation (Pasetto et al 2017)

Summary

- The correct treatment of convection is critical for stellar models throughout the H-R diagram
- The current standard approach using Mixing Length Theory requires
 - an additional relation not justified within the theory
 - with a calibration which is not universal
- A self consistent theory has been derived which allows the system of equations to be closed – this depends on
 - a formulation within co-moving coordinates
 - a new definition of the stability criterion
 - an identification of a growth-rate relation which allows the elimination of one of the variables in the formulation
- The new theory agrees closely with the MLT in the case of the Sun where the MLT is well-calibrated
- The new theory predicts sensible stellar evolutionary tracks, which may already be better than MLT outside where this is calibrated.
- The new theory can be extended to be applied broadly (geology, meteorology, oceanography) with the addition of viscosity terms