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Rationale for replacing Mixing Length Theory
• The current approach for convection is Mixing Length Theory

[Prandtl (1925), Böhm–Vitense (1958)] 
• The universal applicability of the MLT is unproven and requires a 

calibration for each star
⇒ a self-consistent theory will be a significant advance (and overdue)

• The correct treatment of convection is critical for stellar models 
throughout the H-R diagram
⇒ affects every aspect of stellar and galactic evolution

• Advances in asteroseismology have allowed the internal structure of 
stars to be measured directly with increasing accuracy
⇒ allows detailed confrontation with stellar models

• Advent of scale and accuracy of Gaia data requires stellar models of 
greater fidelity to fully utilise it
e.g. location of red giant tracks depends sensitively on MLT parameter
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Convection Theory: stability criteria 
• Energy transfer by convection in 

the classical treatment is a linear 
“stability study” against non-
spherical perturbations
Assuming that dr is small

and pstar+dpstar= psur+dpsur

leads to the 
Schwarzschild/Ledoux criterion
for instability
i.e. convection.r+dr
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Figure 5.3. Schematic illustration of the Schwarzschild criterion for stability against convection. A gas
element is perturbed and displaced upwards from position 1 to position 2, where it expands adiabatically to
maintain pressure equilibrium with its surroundings. If its density is larger than the ambient density, it will
sink back to its original position. If its density is smaller, however, buoyancy forces will accelerate it upwards:
convection occurs. On the right the situation is shown in a density-pressure diagram. A layer is stable against
convection if the density varies more steeply with pressure than for an adiabatic change.

The expansion of the gas element as it rises over ∆r occurs on the local dynamical timescale (i.e.
with the speed of sound), which is typically much shorter than the local timescale for heat exchange,
at least in the deep interior of the star. The displacement and expansion of the gas element will
therefore be very close to adiabatic. We have seen in Sec. 3.4 that the adiabatic exponent γad defined
by eq. (3.56) describes the logarithmic response of the pressure to an adiabatic change in the density.
Writing as δρe and δPe the changes in the density and pressure of the element when it is displaced
over a small distance ∆r, we therefore have

δPe
Pe
= γad

δρe
ρe
. (5.40)

Here δPe is determined by the pressure gradient dP/dr inside the star because Pe = P2, i.e. δPe =
P2 − P1 = (dP/dr)∆r. Therefore the change in density δρe follows from eq. (5.40)

δρe =
ρe
Pe

1
γad

dP
dr
∆r. (5.41)

We can write ρe = ρ1 + δρe and ρ2 = ρ1 + (dρ/dr)∆r, where dρ/dr is the density gradient inside the
star. We can then express the criterion for stability against convection, ρe > ρ2, as

δρe >
dρ
dr
∆r, (5.42)

which combined with eq. (5.41) yields an upper limit to the density gradient for which a layer inside
the star is stable against convection,

1
ρ

dρ
dr
<

1
P

dP
dr

1
γad
, (5.43)

where we have replaced Pe and ρe by P and ρ, since the perturbations are assumed to be very small.
Remember, however, that both dρ/dr and dP/dr are negative. Therefore, in absolute value the sign

65
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Mixing Length Theory
• The formulation is set in terms of:

φrad the radiative energy flux
φcnv the convective energy flux
∇ the stellar temperature gradient with respect to pressure
∇e the element temperature gradient with respect to pressure

• With the assumption that lm ≡ Λm hP where
lm is the mean free path of a convective element
hP is the distance scale of the pressure stratification
Λm is the proportionality constant (the Mixing Length Parameter)

the system of equations 

can be solved.

2 S. Pasetto, C. Chiosi, M. Cropper, and E. K. Grebel

degree of “super-adiabaticity” being so small that for any
practical purpose the temperature gradient of the medium
in presence of convection can be set equal to the adiabatic
value, unless evaluations of the velocities and distances trav-
eled by convective elements are required, e.g. in presence of
convective overshooting (see for instance the early studies
by Maeder 1975a,b; Bressan et al. 1981). Describing con-
vection in the outer layers of a star is by far more difficult
and uncertain. Convective elements in this region have low
thermal capacity, so that the super-adiabatic approximation
can no longer be applied, and the temperature gradient of
the elements and surrounding medium must be determined
separately to exactly know the amount of energy carried
by convection and radiation (e.g., Kippenhahn et al. 2013;
Weiss et al. 2004).

A suitable description of convection is therefore essen-
tial to determine stellar structure. The universally adopted
solution is the Mixing-Length Theory (MLT) of convection,
a simplified analytical formulation of the problem. Unfor-
tunately, a more satisfactory analytical treatment of stellar
convection is still missing and open to debate (e.g., Canuto
2011). The MLT stands on the works of Biermann (1951)
and Böhm-Vitense (1958) which are based on earlier works
on the concept of convective motion by Prandtl (1925). In
this standard approach, the motion of convective elements
is related to the mean-free-path lm that a generic element is
supposed to travel at any given depth inside the convectively
unstable regions of a star (e.g., Kippenhahn & Weigert 1994,
Chapter 7). The mean free path lm is assumed to be propor-
tional to the natural distance scale hP given by the pressure
stratification of the star. The proportionality factor is how-
ever poorly known and constrained. The mixing-length (ML)
parameter Λm, defined by lm ≡ ΛmhP , must be empirically
determined. Nevertheless, the knowledge of this parameter is
of paramount importance in correctly determining the con-
vective energy transport, and hence the radius and effective
temperature of a star. This critical situation explains the
many versions of convection theory that can be found when
investigated in different regions and evolutionary phases of
a star such as the overshooting from core or envelopes zones
(e.g., Deng & Xiong 2008; Claret 2007; Bressan et al. 1981),
the helium semi-convection in low and intermediate mass
stars m < 5M⊙ (e.g., Bressan et al. 1993; Castellani et al.
1985), the time-dependent convection in the carbon defla-
gration process in Type I supernovae (e.g., Nomoto et al.
1976), and the studies on the efficiency of convective over-
shooting (e.g., Bressan et al. 2013), to mention just a few.

Looking at the classical formulation of the MLT pre-
sented in any textbook, see for instance Hofmeister et al.
(1964), Cox & Giuli (1968) and their modern versions (Kip-
penhahn et al. 2013; Weiss et al. 2004, respectively), we note
that the MLT reduces to the energy conservation principle
supplemented by an estimate of the mean velocity of con-
vective elements. In a convective region the total energy flux
(ϕ) is the sum of the convective flux (ϕcnv) and the radiative
flux (ϕrad); the total flux is set proportional to a fictitious
radiative gradient ∇rad

1 (which is always known once the

1 Throughout the paper, we will introduce several logarithmic
temperature gradients with respect to pressure d log T

d logP , shortly
indicated as ∇. Each of these gradients is also identified by a

total flux coming from inside is assigned, typically case in
stellar interiors); the true radiative flux ϕrad is proportional
to the real gradient of the medium∇; and the convective flux
ϕcnv is proportional to the difference between the gradient
of the convective elements and the gradient of the medium
(∇e − ∇). By construction, the convective flux is also pro-
portional to the mass of an ideal convective element, i.e., the
amount of matter crossing the unit area per unit time with
the mean velocity of convective elements. These elements
may have any shape, mass, velocity and lifetime, and may
travel different distances before dissolving into the surround-
ing medium, releasing their energy excess and inducing mix-
ing in the fluid. However all this ample variety of possibilities
is simplified to an ideal element of averaged dimensions, life-
time, mean velocity and distance travelled before dissolving:
the so-called mixing length lm (and associated mixing length
parameter Λm). As far as the velocity is concerned, this is es-
timated from the work done by the buoyancy force over the
distance lm, a fraction of which is supposed to go into kinetic
energy of the convective elements. Since in this problem the
number of unknowns exceeds the number of equations (flux
conservation and velocity), two more suitable relations are
usually added. These are firstly the ratio between the excess
of energy in the bubble just before dissolving, to the energy
radiated away (lost) during the lifetime, and secondly the
excess rate of energy generation minus the excess rate of
energy loss by radiation in the element relative to the sur-
roundings. These are all functions of ∇, ∇e and ∇ad, see
e.g., Cox & Giuli (1968). Now the number of unknowns, i.e.
ϕrad, ϕcnv, ∇, ∇e, is equal to the number of equations and
the problem can be solved once lm and/or Λm are assigned.
In this way the complex fluid-dynamic situation is reduced
to an estimate of the mean element velocity simply derived
from the sole buoyancy force, neglecting other fluid-dynamic
forces that can shape the motion of convective elements as
function of time and surrounding medium.

We present here a new description of stellar convec-
tion that provides a simple and yet dynamically complete
fully analytical integration of the hydrodynamic equations,
matching the existing literature results based on the clas-
sical MLT, but without making use of any mixing-length
parameter Λm.

The plan of the paper is as follows. In Section 2 we for-
mulate the problem within the mathematical framework we
intend to adopt. In Section 3 we define the concept of a scalar
field of the velocity potential for expanding/contracting con-
vective elements. In Section 4 and 5 we fromulate the equa-
tion governing the two degrees of freedom of our dynamical
system: Section 4 we formulate the equation of motion for
a convective element as seen by a non-inertial frame of ref-
erence co-moving with it, and present two lemmas that are
functional to our aim; in Section 4.3 we solve the equation of
motion of a convective element expressed in the co-moving
frame of reference. In Section 6 we present the predictions of
our theory. First, we formulate the basic equations of stellar
convection showing that the mixing length parameter is no

subscript such as ∇e, ∇ξ, ∇ad, ∇rad depending of the circum-
stances. Finally, the symbol ∇ with no subscript is reserved for
the ambient temperature gradient with respect to pressure across
a star.

c⃝ 2013 RAS, MNRAS 000, 1–??
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ϕcnv, the average temperature over pressure gradient ∇e ≡
∣∣ d lnT
d lnP

∣∣
e
of the element, and

the stellar gradient ∇. Moreover, two extra variables, the mean velocity v̄ and the mean
ξ̄e of the convective elements are obtained as a result of the solution of the system. All
these physical quantities are a function of the pressure P , temperature T , density ρ,
specific heat at constant pressure cp, adiabatic gradient of temperature over pressure
∇ad ≡

∣∣ d lnT
d lnP

∣∣
ad
, radiative gradient ∇rad, molecular weight gradient ∇µ ≡ d lnµ

d lnP , the
gravity g, the opacity κ. Finally, all these quantities are a function of the position inside
the star and time.

The general form of the system of equations obtained in Pasetto et al. (2014) is:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕrad/cnd = 4ac
3

T 4

κhP ρ∇
ϕrad/cnd + ϕcnv = 4ac

3
T 4

κhP ρ∇rad

v̄2 =
∇−∇e−ϕ

δ ∇µ
3hP
2δv̄τ +(∇e+2∇− ϕ

2δ∇µ)
ξ̄eg

ϕcnv = ρcPT (∇−∇e)
v̄2τ
hP

∇e−∇ad
∇−∇e

= 4acT 3

κρ2cP
τ
ξ̄2e

ξ̄e = g
4

∇−∇e−ϕ
δ ∇µ

3hP
2δv̄τ +(∇e+2∇− ϕ

2δ∇µ)
χ̄,

(2.1)

where a is the radiation-density constant, and c the speed of light and for the purposes
of this paper χ̄ is a function of time linking size to velocity (i.e. a monotonic linear map
(a bijection) between time, velocity and size of the convective elements). For any other
see Appendix A of Pasetto et al. (2014)).

It is worth remarking here that the SFC theory, although developed in spherical co-
ordinates, does not really depend on it because no assumption is made about the shape
of convective elements when carrying energy up and down. The elements indeed are not
separated from the surrounding medium by a surface (in such a case one should use the
Young-Laplace treatment of the surface tension). Our approach differ from the classical
physical description in literature (e.g., Tuteja et al. 2010, and references therein), but
it agrees with astrophysical 3D-hydrodynamical simulations in which the convection is
represented by small volumes moving up and down for a short time†.

This system of equations can be proved to be ”‘closed”’, i.e. self-consistently deter-
mined. A unique manifold of solution exists (see ”theorem of uniqueness” in Pasetto et al.
(2014)) that yields all the possible solutions. This differs from the MLT where the same
solution is obtained with a degree of freedom (i.e. the mixing-length). Now, this extra
degree of freedom is fixed by introducing another equation of motion for the convective
layers (i.e. expansion in addition to the vertical motion). Finally, it is worth noting that
in the SFC theory the convective energy transport of the energy occurs mainly by the
expansion of the elements and less by their vertical motion.

3. Results

We present here an extended comparison between the standard MLT and the SFC
theory. The results are obtained from solving the system of Eq.2.1 for each layer of a
stellar atmosphere governed by the equations considered in Section 2.1.

† The present formulation, however, cannot be applied to convective overshooting for which
a suitable approach must be developed.
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Figure 4. Q parameter for the model of the Sun in an arbitrary
but fixed point in the Sun at the layer z = 98

100R⊙. The plot has
been normalized to the value of the maximum.

tive elements. What is not expected a priori from a simple
asymptotic expansion is the maximum that we see in Fig.4.
This maximum is the result of the opposite time dependence
of the numerator and denominator: while the denominator
progressively increases toward its asymptotic value as shown
in Fig. 3, the numerator monotonically decreases with time.

In column (3) Table 1 we list the results we have ob-
tained from the system of Eq.(60) limited to the layer we
have selected (z = 98

100R⊙). We remind the reader that any
other convectively-unstable layer would have shown similar
results. A numerical investigation of the consequences of the
present theory and a complete upgrade of the stellar models
in Bertelli et al. (2008, 2009) is deferred to the forthcoming
paper Pasetto et al. (2014).

Now we compare our results with those obtained from
the standard MLT of stellar convection represented by the
system of equations
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ϕrad|cnd = 4ac
3

T4

κhP ρ∇
ϕrad|cnd + ϕcnv = 4ac

3
T4

κhP ρ∇rad

v̄2 = gδ (∇−∇e)
l2m
8hP

ϕcnv = ρcPT
√
gδ

l2m
4
√

2
h−3/2
P (∇−∇e)

3/2

∇e−∇ad
∇−∇e

= 6acT3

κρ2cP lmv̄
,

(62)
in which lm contains the mixing length parameter Λm. The
derivation and solution of this system of equations can be
found in any classical textbook of stellar structure (e.g., Kip-
penhahn et al. 2013; Weiss et al. 2004). We limit ourselves
to note that in this classical system we have five equations
instead of six, see Eq.(48). If we adopt the same model of
the Sun we have used before to solve the system Eq.(48)
with the extra value of Λm tuned on the sun, we get the
results presented in column (4) of Table 1. The results are
practically coincident with those from the new theory.

The comparison between our theory and the standard
MLT predictions can then be extended over the entire
convective region inside the Sun. We define a normalized

difference function as ∆Ξ (x) ≡
∣∣∣ΞMLT(x)−Ξnew(x)

Ξnew(x)

∣∣∣ where

Ξ = ∇,∇e, etc., i.e. for every function of interest we com-
pute the difference of its values obtained with the standard
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Figure 5. Normalized difference function evaluated for ∇e (∆∇e,
purple line) and ∇ (∆∇, green line). MLT values are computed
assuming Λm = 1.64
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Figure 6. Normalized difference function evaluated for convec-
tive (∆ϕcnv, purple line) and radiative flux (∆ϕrad, green line).
Same Λm has been adopted as Fig.5

MLT, ΞMST, and our new approach Ξnew. The results are
plotted in Fig.5 for Ξ = ∇ and Ξ = ∇e and in Fig.6 for
Ξ = ϕcnv and Ξ = ϕrad.

As it is evident from these figures, the normalized dif-
ferences between the two theoretical predictions are of the
order of O(10−5) over all the stellar radii of interest. This
result holds independently from the stellar model adopted.

Furthermore, by looking at Fig.7 we see that the condi-
tions that form the foundation of our theory (Eq.(12)) are
fully satisfied. The sound speed profile of our model, that is
part of our Eq.(12), is shown in Fig.7. The result is closely
consistent with the models available from the literature (e.g.,
Weiss et al. 2004) or computed from Bertelli et al. (2008).

The different velocities of the convective elements pre-
dicted by the two theories may have some implications on
the extension and efficiency of convective overshooting: the
subject will be investigated in a forthcoming paper (see
Pasetto et al. 2014, in preparation). Moreover, the mean-
ing of the time-scales also differs: As far as the lifetime of
the typical convective element is concerned at a chosen stel-
lar radius, we evaluate this for the MLT as customary with

c⃝ 2013 RAS, MNRAS 000, 1–??
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• Pasetto et al (2014) MNRAS, 445, 3592

– Paper 1 formulates the problem in the reference frame of the moving 
convective element

– This allows the identification of a self-consistent additional constraint which can 
be used to close the system of equations without the external imposition of a 
mixing-length parameter

– A comparison is made of the derived parameters (e.g., sound speed) in the 
Sun (where the Mixing Length Theory is calibrated)

• Pasetto et al (2016) MNRAS, 459, 3182

– Paper 2 presents the first stellar models using the non-MLT treatment
– Evolutionary tracks are derived and compared to MLT-derived tracks
– Derived internal parameters are compared between the two theories and 

agreement is found to be satisfactory

A self-consistent theory: two papers
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Self-consistent Theory: stability criterion

𝑟

• The new treatment is in the 
co-moving frame of the bubble

𝛏

𝒗

co-moving coordinates
+ 
the concept of the 
“velocity potential”

Theory of stellar convection: Removing the Mixing-Length Parameter 7

4.2 The velocity-space expansion factor

As a convective element expands during the upward mo-
tion, its surface acts as a piston compressing the sur-
rounding medium and the perturbation reaches rapidly the
sound speed, vs, throughout the latter (e.g., Landau & Lif-
shitz 1959). Under the approximations made for Eq.(1) and
Eq.(3), i.e. excluding attenuation by shear, bulk or relax-
ation viscosity, neglecting for the moment the heat conduc-
tivity, and limiting ourselves to the case of convective ele-
ments moving with velocities smaller than the sound speed,
we get the following condition

ε ≡ v

ξ̇e
≪ 1∀t > t̂, (12)

i.e. the relative velocity between the convective element and
the intra-stellar medium v = ∥v∥ is much smaller than its

expansion velocity ξ̇e =
∥∥∥ξ̇e

∥∥∥. This is a reasonable assump-

tion for the stars and phases that we want to consider.
Trans/supersonic motions of the convective cells (e.g., ex-
pected in red supergiants), v ∼ vs, require a fully compres-
sive model that is beyond the aims of the present paper. We
will show in Section 6 that the theory developed under the
approximation of Eq.(12) leads to correct predictions for the
properties of the Sun. A simple, largely intuitive justification
of Eq. (12) is provided by the following arguments: an as-
cending bubble must first contrast the gravity and push the
surrounding medium, this second effect occurring at nearly
constant gravity; therefore v ≪ ξ̇e. In contrast, a descend-
ing bubble is accelerated by the gravity while being squeezed
by the surrounding medium at nearly constant gravity and
therefore its radius shrinks faster than the descending mo-
tion, also in this case v ≪ ξ̇e.

Lemma 1: Pressure-radius relation for rapidly
expanding/contracting sphere in an external envi-
ronment. We prove that in the case a sphere is expand-
ing/contracting more rapidly than its translational motion,
than the following approximate relation holds:

P
ρ

+ Φg = Aξe

(
3
2
cos θ − cosφ

)
+ ξ̈eξe +

3
2
ξ̇2e , (13)

where pressure, density and potential are evaluated at the
convective element surface.

Proof : We start by considering the result of the pre-
vious Theorem in the form expressed by Eq.(11). We are
assuming that condition expressed by Eq. (12) holds in the
same environment where the Theorem is considered. Divid-
ing both sides of Eq.(11) by ξ̇2e when ξ̇e ̸= 0, i.e. formally
when t̂ ̸= 0, we can find a time t̂ so that for t > t̂ ̸= 0 we
have
(

v

ξ̇e

)2 1
2

(
9
4
sin2θ − 1

)
≪ A

ξe

ξ̇2e

(
3
2
cos θ − cosφ

)
+

ξ̈eξe

ξ̇2e
,

and
(
vξ̇e

ξ̇2e

)2
5
2
cos θ ≪ A

ξe

ξ̇2e

(
3
2
cos θ − cosφ

)
+

ξ̈eξe

ξ̇2e
,

thus proving us with

P
ρ

+ Φg =
A
2
∥ξ∥ ξ3e

∥ξ∥3
cos θ +

ξe
∥ξ∥

(
ξ̈eξe + 2ξ̇2e

)

− 1
2
ξ̇2e

(
ξ2e

∥ξ∥2

)2
∣∣∣∣∣
∥ξ∥=ξe

, (14)

where pressure, density and potential are evaluated at the
convective element surface, and with t̂ we do not refer to any
“initial time” for the existence of a generic convective cell
when ξ̇e ∼ v, but rather to any time at which the Eq.(12)
is fully satisfied. Simplifying and exploiting spherical coor-
dinates we conclude. This proves the Lemma 1 #.

Initially the expansion rate is not necessarily faster than
the bubble speed and the equation Eq.(12) is satisfied only
asymptotically for t larger than a given t̂ that can depend
on the stellar properties. The acceleration term A has to be
retained because the condition Eq.(12) relates our two La-

grangian variables by integration but its derivative, A
ξ̇e

− vξ̈e
ξ̇2e

,

does not represent a physical constraint: the correct relation
between A and v and ξe will be worked out only in Eq.(60)
in relation with the radiative and adiabatic gradients.

We move now to a realistic situation. We consider the
case in which a convective element moves radially upward
throughout the external zones of a star and the accelera-
tion and velocity are co-linear, and finally we exclude the
possibility of convective overshooting that will be consid-
ered in a forthcoming paper (Pasetto et al. 2014). Since the
mathematical simplification of Eq.(11) brought by Eq.(12)
is of paramount importance, we must fully understand its
physical implication and meaning of it. This theory of con-
vection is based on the assumption of non-local-equilibrium,
i.e. we assume that the interstellar plasma on the surface of
the expanding/contracting convective element while mov-
ing outward/inward slightly deviates from strict hydrostatic
equilibrium. The condition of rigorous hydrostatic equilib-
rium is met by the star only at larger distances from the
surface of a convective element, as required by Eq.(10),
i.e. formally only in the limit ∥ξ∥ → ∞. The physical in-
terpretation of this limit can be understood as following.
Eq.(12) has physical implications on the path that the con-
vective element is allowed to travel, i.e. the hypothesis ex-
pressed by Eq.(12), under which Eq.(13) is valid, indirectly
excludes the possibility of long paths for convective ele-
ments: this is the main reason why in our theory the mean
free path lm and associated mixing-length parameter Λm do
not intervene. This condition is already accounted by the
physics implicit in Eq.(8) which is simplified by an expan-
sion on a small parameter ε ≡ v

ξ̇e
to Eq. 13. With these

considerations on Eq.(12), it is reasonable to assume that
the size of a convective element is always much smaller
than the size of the star, because if the path travelled by
a convective element obeys ∥∆xO′∥ = O(ξe) then surely
∥xO′ +∆xO′∥ = O(∥xO′∥+ ξe) by the Cauchy-Schwarz in-
equality. In this equation the centre of a convective element
is xO′ (i.e. the location of the origin of the system S1, O

′).
In brief, we can assume that ξe

∥xO′∥ ≪ 1∀t > t̂, the collat-

eral effect of which is to exclude the central zones of the
star from our analysis. In this way, the property of hydro-
static equilibrium to which we refer by pushing to infinity
the limit x → ∞ in Eq.(9) in order to fix Eq.(10), has the
physical meaning of “far away” from the convective element
surface, but still “close enough” to retain the density ρ as
constant on global stellar scale. We refer to these mathe-
matically asymptotic but local values for the pressure as
P∞, with ρ∞ and Φ∞

g as already mentioned in Eq.(4). The

c⃝ 2013 RAS, MNRAS 000, 1–??

i.e. the new instability criterion 
is a velocity criterion that the 
expansion speed of the bubble
is greater than the 
speed of the bubble in the star

• The instability criterion now 
translates to a 
criterion that
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Relation between blob size and time
• the unstable expansion is in terms of hyper-geometric functions 

which is quadratic in time in the leading termTheory of stellar convection: Removing the Mixing-Length Parameter 19

Figure A1. Integration of Eq.(A5), for convection-unstable (χ,
thick-red), time averaged (χ̄ (τ), thick-blue) and stable layers
(dashed grey). The red line is partially dashed to remind the
reader that Eq.(A5) holds only on its asymptotic expansion, say
for t > t̂ for an arbitrary chosen t̂ = 0.3t/t0 in the figure (see
Section 4.3 for detailed discussion) with monotonic character ev-
ident from Eq.(23). The black semi-circle over {χ, τ} = {1.0, 0.0}
is excluded.
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Inserting now the first equation into the second one and
defining two auxiliary quantities depending only on the local
properties of the star

k ≡ acT3

κρ2cP
and g4 ≡ g

4
, (50)

we get:
⎧
⎪⎨

⎪⎩

(∇−∇e)
2

(∇e+2∇)(∇rad−∇) ξ̄e = k
3τg4

∇e−∇ad
∇−∇e

ξ̄2e = τk
∇e+2∇
∇−∇e

ξ̄e = g4χ̄.

(51)

Furthermore, taking the ratio of the first to the third equa-
tion and the ratio of second equation to the square of the
third one, after some algebraic manipulations we get:

⎧
⎨

⎩

(∇−∇e)
3

(∇e+2∇)2(∇rad−∇)
= 1

3τ
k

g24χ
(∇e−∇ad)(∇−∇e)

(∇e+2∇)2
= τ

χ
k

g24 χ̄
.

(52)

For each layer inside the convectively unstable region, we
define a few auxiliary variables:

W ≡ ∇rad −∇ad > 0, (53)

and

η ≡ ∇−∇ad, (54)

Y ≡ ∇−∇e. (55)

Using these expressions we can write

∇rad −∇ = W − η

∇e −∇ad = η − Y

∇e + 2∇ = −Y + 3 (η +∇ad) . (56)

Finally Eq.(52) yields the most important relation and result
of our study. We get

Y 2

(W − η) (η − Y )
=

1
3
χ̄
τ2

. (57)

which we need to solve for τ → ∞. But recalling Eq.(23),
the asymptotic temporal dependence of this relation (RHS
→ const. for τ → ∞) shows that convection inside stars
does not depend on time evolution and/or any spatial scale
parameter, to first order (i.e. it is independent from any the
mixing-length/mixing-time):

Y 2

(W − η) (η − Y )
= const. (58)

This equation in the space of W , η and Y describes a surface
containing the manifold of all possible solutions. This man-
ifold is graphically represented in Fig. 2, where W , η and Y
are replaced by their definitions: Eq.(53), (54) and (55) and
the RHS constant have been evaluated at some arbitrary
layer inside the convective region. It is worth recalling here
that of the four temperature gradients that are involved,
i.e. ∇rad, ∇ad, ∇e, ∇, the adiabatic gradient ∇ad is always
known given the thermodynamical state of the medium, and
the radiative gradient ∇rad is known once the total flux is
specified (this is the typical case of convection in the outer
layers, where the MLT and/or the present theory are best
suited). We are left with the unknown gradients ∇e and ∇.
It goes without saying that the constant at RHS of Eq. (58),
∇rad and ∇ad depend on the position inside the star, so that
each layer has its own values for ∇e and ∇ #.

Figure 2. The manifold represent the surface of all the possible
solution for the convection equation. Surfaces of constant W , η
and Y are plotted but labelled with their corresponding defini-
tions:W in yellow, η in orange and Y in blue. The purple manifold
solution is computed for all the numerical values of interest for
stars on the left-side of the Hayashi-line in the HR-diagram.

Finally, in the case of a chemically non homogeneous
medium, ∇µ ̸= 0, after changing the definition of Y in Eq.
(55) to

Y ≡ ∇−∇e +
ϕ
δ
∇µ, (59)

we obtain a solution manifold in the form of Eq.(58) (but
with a different constant). Thus, an analogous theorem holds
in the case of a chemically non-homogeneous convectively-
unstable layer, which represents the mathematical proof of
the recent finding in numerical investigations by Tanner
et al. (2013).

6.3 Numerical solution: comparing the new
theory with the classical MLT

The previous theorem immediately suggests a time-
independent behaviour for the functions that are solutions
of our system of equations for stellar convection. Thus, we
expect a numerical integration of the system of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕrad|cnd = 4ac
3

T4

κhP ρ∇
ϕrad|cnd + ϕcnv = 4ac

3
T4

κhP ρ∇rad

v̄2

4ξe
= ∇−∇e

3hP
2δv̄τ +∇e+2∇

g4

ϕcnv = 1
2ρcPT (∇−∇e) v̄2τ

hP
∇e−∇ad
∇−∇e

= 4acT3

κρ2cP

τ
ξ̄2e

ξ̄e = ∇−∇e
3hP
2δv̄τ +∇e+2∇

g4χ̄ (τ) ,

(60)
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Formulation
• Pasetto et al (2014) derives 6 equations in 6 unknowns:

• The two new unknowns are: 
the mean size of the convective element and
the mean velocity
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ϕcnv, the average temperature over pressure gradient ∇e ≡
∣∣ d lnT
d lnP

∣∣
e
of the element, and

the stellar gradient ∇. Moreover, two extra variables, the mean velocity v̄ and the mean
ξ̄e of the convective elements are obtained as a result of the solution of the system. All
these physical quantities are a function of the pressure P , temperature T , density ρ,
specific heat at constant pressure cp, adiabatic gradient of temperature over pressure
∇ad ≡

∣∣ d lnT
d lnP

∣∣
ad
, radiative gradient ∇rad, molecular weight gradient ∇µ ≡ d lnµ

d lnP , the
gravity g, the opacity κ. Finally, all these quantities are a function of the position inside
the star and time.

The general form of the system of equations obtained in Pasetto et al. (2014) is:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕrad/cnd = 4ac
3

T 4

κhP ρ∇
ϕrad/cnd + ϕcnv = 4ac

3
T 4

κhP ρ∇rad

v̄2 =
∇−∇e−ϕ

δ ∇µ
3hP
2δv̄τ +(∇e+2∇− ϕ

2δ∇µ)
ξ̄eg

ϕcnv = ρcPT (∇−∇e)
v̄2τ
hP

∇e−∇ad
∇−∇e

= 4acT 3

κρ2cP
τ
ξ̄2e

ξ̄e = g
4

∇−∇e−ϕ
δ ∇µ

3hP
2δv̄τ +(∇e+2∇− ϕ

2δ∇µ)
χ̄,

(2.1)

where a is the radiation-density constant, and c the speed of light and for the purposes
of this paper χ̄ is a function of time linking size to velocity (i.e. a monotonic linear map
(a bijection) between time, velocity and size of the convective elements). For any other
see Appendix A of Pasetto et al. (2014)).

It is worth remarking here that the SFC theory, although developed in spherical co-
ordinates, does not really depend on it because no assumption is made about the shape
of convective elements when carrying energy up and down. The elements indeed are not
separated from the surrounding medium by a surface (in such a case one should use the
Young-Laplace treatment of the surface tension). Our approach differ from the classical
physical description in literature (e.g., Tuteja et al. 2010, and references therein), but
it agrees with astrophysical 3D-hydrodynamical simulations in which the convection is
represented by small volumes moving up and down for a short time†.

This system of equations can be proved to be ”‘closed”’, i.e. self-consistently deter-
mined. A unique manifold of solution exists (see ”theorem of uniqueness” in Pasetto et al.
(2014)) that yields all the possible solutions. This differs from the MLT where the same
solution is obtained with a degree of freedom (i.e. the mixing-length). Now, this extra
degree of freedom is fixed by introducing another equation of motion for the convective
layers (i.e. expansion in addition to the vertical motion). Finally, it is worth noting that
in the SFC theory the convective energy transport of the energy occurs mainly by the
expansion of the elements and less by their vertical motion.

3. Results

We present here an extended comparison between the standard MLT and the SFC
theory. The results are obtained from solving the system of Eq.2.1 for each layer of a
stellar atmosphere governed by the equations considered in Section 2.1.

† The present formulation, however, cannot be applied to convective overshooting for which
a suitable approach must be developed.
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we call “stellar-system” the body of variables (temperature,
pressure, density, etc..) defining the physical state of stellar
interiors at a given position x, it holds the following:

Theorem of the uniqueness of the stellar con-
vection. The radiative ∇rad, the adiabatic ∇ad, the local
gradient of the star ∇, and the convective element gradient
∇e are in a one-to-one correspondence (a bijection) with the
stellar system in which they are embedded.

Proof : To prove the assertion of this theorem we need
to solve the equation of stellar convection without any free
parameter (e.g., the mixing length Λm) thus univocally as-
signing to each location inside a star its own characteristic
convection. In other words, we are going to describe the
stellar convection not as a one-parameter family of solu-
tions (i.e. the mixing-length parameter Λm to be fixed by
external constraints) but with a unique solution of the sys-
tem of equations governing stellar convection. We start by
extending the present formalism to include a few fundamen-
tal theoretical tools. A convective cell of mass me, volume
υe and radius ξe, once it has acquired a positive excess of
temperature |∆T | = T (∇−∇e)

∆xO′
hP

with respect to its
surroundings, radiates energy into the stellar medium with a

flux ϕrad = 4acT3

3κρ |∇n̂T | where a = 7.5657×10−16Jm−3K−4

is the radiation-density constant, κ the mean absorption co-
efficient, or opacity, and c the speed of light. The radia-
tive loss per unit of time dQloss

dt from the convective ele-
ment due to this radiative flux and its adiabatic expansion
causes a temperature decrease, simply because from Eq.(38)
dQloss = −mecP dT ⇒ Q̇loss = ρeυecP ⟨∇xT, ẋ⟩. We then

relate the radiative loss dQloss
dt = 8acT3

3κρ T (∇−∇e)
|∆x|
hP

S
2ξe

to the temperature gradient ||∇xT || = − 1
ρV cP v

dQloss
dt using

the formalism of Section 4 by recalling that Σ
2V ξe

= 3
2ξ2e

to

obtain the relation

∇e −∇ad

∇−∇e
=

4acT 3

κρ2cP

∆t
ξ2e

, (45)

which represents another equation to solve together with
those we have developed.

Furthermore, in addition to the convective flux one
should consider the flux carried by radiation and conduc-
tion. The radiative flux is ubiquitous and no other comments
are necessary. Suffice to recall here that it depends on the
temperature gradient existing in the stellar medium and the
so-called Rosseland mean opacity. Conduction has an impor-
tant role in the degenerate cores of red giants and advanced
stages of intermediate-mass and massive stars, and domi-
nates in the isothermal cores of white dwarfs and neutron
stars. The conductive flux can be expressed by the same re-
lation for the radiative flux provided the opacity is suitably
redefined. In the following we will limit ourselves to the case
of normal (main sequence) stars and therefore leave con-
duction aside. However to consider the possibility of includ-
ing the conductive flux, we indicate with ϕrad|cnd either the
radiative flux alone or the radiative and conductive fluxes
lumped together with the mean opacity κ suitably redefined
(see Kippenhahn et al. 2013, for all details). Therefore, in
our simplified situation, the total flux is the sum of the ra-
diative and convective terms ϕrad + ϕcnv.

We define now the gradient ∇rad that would be neces-

sary to transport the total flux by radiation alone as:

ϕrad + ϕcnv =
4acG
3

T 4m

κp∥xO′∥2
∇rad

=
4ac
3

T 4

κhP ρ
∇rad. (46)

Denoting with ∇ the ambient gradient in presence of radi-
ation and convection the amount of energy carried by the
sole radiation (or radiation + conduction) is

ϕrad|cnd =
4acG
3

T 4m

κP∥xO′∥2
∇

=
4ac
3

T 4

κhP ρ
∇, (47)

We recollect here the system of six equations Eqs.
(47), (46), (45), (44), (43), and (21) of the six un-
knowns

{
ϕrad|cnd,ϕcnv, v,∇e,∇, ξe

}
that we solve as

a function of position inside the star x and for
t → ∞, once the quantities {P, T, ρ, l,m, cP ,∇ad,∇rad, g}
or {P, T, ρ, l,m, cP ,∇ad,∇rad,∇µ, g} are locally known as
function of x. In the case of a chemically homogeneous layer
unstable to convection, the system of equations for t → ∞
is7:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕrad|cnd = 4acG
3

T4m

κP∥xO′∥2∇

ϕrad|cnd + ϕcnv = 4acG
3

T4m

κP∥xO′∥2∇rad

v̄2

ξ̄e
= (∇−∇e)

(∇e+2∇)g

ϕcnv = 1
2ρcpT (∇−∇e)

v̄2t0τ
hp

∇be−∇ad
∇−∇e

= 4acT3

κρ2cp

t0τ
ξ̄2e

ξ̄e =
(
t0
2

)2 ∇−∇b
∇b+2∇gχ̄ (τ)

(48)

where the last equation is the convective element equa-
tion studied in Section 4.3, time averaged (see Eq.(21) and
Eq.(17) and Section 6.1). To prove the theorem we need to
show that the asymptotic behaviour of this system of equa-
tions is time independent, i.e. we do not need to introduce
any temporal time-scale (or any arbitrary spatial scale lm
as required by the MLT), i.e. the solution of the system is a
unique manifold. This will induce an asymptotic behaviour
in the numerical solution of the system, which will be pre-
sented in the Section 6.3.

The solution of this set of algebraic equations leads to
a manifold that determines the gradients we are looking for,
i.e. ∇e and ∇. We proceed as follows. We substitute the
first equation into the second one to reduce the number of
equations from six to five. We then substitute its result into
the third equation thus obtaining a set of four equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕcnv = 4acT4

3κhP ρ (∇rad −∇)

ϕcnv (∇e + 2∇) = ρcP Tτg
hP

ξe(∇−∇e)
2

∇e−∇ad
∇−∇e

= 4acT3

κρ2cP

τ
ξ̄2e

ξ̄e = g
4

∇−∇e
∇e+2∇ χ̄.

(49)

7 Since we are interested only in the asymptotic behaviour of
the system we can already insert Eq.(36) with its asymptotic
behaviour, see the remarks on Eq.(36) and Eq.(43) for chemical
homogeneous layers. However, when performing the numerical in-
tegration presented in Section 6.3, all terms will be included.

c⃝ 2013 RAS, MNRAS 000, 1–??
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ϕcnv, the average temperature over pressure gradient ∇e ≡
∣∣ d lnT
d lnP

∣∣
e
of the element, and

the stellar gradient ∇. Moreover, two extra variables, the mean velocity v̄ and the mean
ξ̄e of the convective elements are obtained as a result of the solution of the system. All
these physical quantities are a function of the pressure P , temperature T , density ρ,
specific heat at constant pressure cp, adiabatic gradient of temperature over pressure
∇ad ≡

∣∣ d lnT
d lnP

∣∣
ad
, radiative gradient ∇rad, molecular weight gradient ∇µ ≡ d lnµ

d lnP , the
gravity g, the opacity κ. Finally, all these quantities are a function of the position inside
the star and time.

The general form of the system of equations obtained in Pasetto et al. (2014) is:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕrad/cnd = 4ac
3

T 4

κhP ρ∇
ϕrad/cnd + ϕcnv = 4ac

3
T 4

κhP ρ∇rad

v̄2 =
∇−∇e−ϕ

δ ∇µ
3hP
2δv̄τ +(∇e+2∇− ϕ

2δ∇µ)
ξ̄eg

ϕcnv = ρcPT (∇−∇e)
v̄2τ
hP

∇e−∇ad
∇−∇e

= 4acT 3

κρ2cP
τ
ξ̄2e

ξ̄e = g
4

∇−∇e−ϕ
δ ∇µ

3hP
2δv̄τ +(∇e+2∇− ϕ

2δ∇µ)
χ̄,

(2.1)

where a is the radiation-density constant, and c the speed of light and for the purposes
of this paper χ̄ is a function of time linking size to velocity (i.e. a monotonic linear map
(a bijection) between time, velocity and size of the convective elements). For any other
see Appendix A of Pasetto et al. (2014)).

It is worth remarking here that the SFC theory, although developed in spherical co-
ordinates, does not really depend on it because no assumption is made about the shape
of convective elements when carrying energy up and down. The elements indeed are not
separated from the surrounding medium by a surface (in such a case one should use the
Young-Laplace treatment of the surface tension). Our approach differ from the classical
physical description in literature (e.g., Tuteja et al. 2010, and references therein), but
it agrees with astrophysical 3D-hydrodynamical simulations in which the convection is
represented by small volumes moving up and down for a short time†.

This system of equations can be proved to be ”‘closed”’, i.e. self-consistently deter-
mined. A unique manifold of solution exists (see ”theorem of uniqueness” in Pasetto et al.
(2014)) that yields all the possible solutions. This differs from the MLT where the same
solution is obtained with a degree of freedom (i.e. the mixing-length). Now, this extra
degree of freedom is fixed by introducing another equation of motion for the convective
layers (i.e. expansion in addition to the vertical motion). Finally, it is worth noting that
in the SFC theory the convective energy transport of the energy occurs mainly by the
expansion of the elements and less by their vertical motion.

3. Results

We present here an extended comparison between the standard MLT and the SFC
theory. The results are obtained from solving the system of Eq.2.1 for each layer of a
stellar atmosphere governed by the equations considered in Section 2.1.

† The present formulation, however, cannot be applied to convective overshooting for which
a suitable approach must be developed.
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Solving the system of equations
• After substitutions and definition of new variables, the 6 equations 

reduce to the following:

where:

• but, recall from previous graph, so            constant
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Inserting now the first equation into the second one and
defining two auxiliary quantities depending only on the local
properties of the star

k ≡ acT3

κρ2cP
and g4 ≡ g

4
, (50)

we get:
⎧
⎪⎨

⎪⎩

(∇−∇e)
2

(∇e+2∇)(∇rad−∇) ξ̄e = k
3τg4

∇e−∇ad
∇−∇e

ξ̄2e = τk
∇e+2∇
∇−∇e

ξ̄e = g4χ̄.

(51)

Furthermore, taking the ratio of the first to the third equa-
tion and the ratio of second equation to the square of the
third one, after some algebraic manipulations we get:

⎧
⎨

⎩

(∇−∇e)
3

(∇e+2∇)2(∇rad−∇)
= 1

3τ
k

g24χ
(∇e−∇ad)(∇−∇e)

(∇e+2∇)2
= τ

χ
k

g24 χ̄
.

(52)

For each layer inside the convectively unstable region, we
define a few auxiliary variables:

W ≡ ∇rad −∇ad > 0, (53)

and

η ≡ ∇−∇ad, (54)

Y ≡ ∇−∇e. (55)

Using these expressions we can write

∇rad −∇ = W − η

∇e −∇ad = η − Y

∇e + 2∇ = −Y + 3 (η +∇ad) . (56)

Finally Eq.(52) yields the most important relation and result
of our study. We get

Y 2

(W − η) (η − Y )
=

1
3
χ̄
τ2

. (57)

which we need to solve for τ → ∞. But recalling Eq.(23),
the asymptotic temporal dependence of this relation (RHS
→ const. for τ → ∞) shows that convection inside stars
does not depend on time evolution and/or any spatial scale
parameter, to first order (i.e. it is independent from any the
mixing-length/mixing-time):

Y 2

(W − η) (η − Y )
= const. (58)

This equation in the space of W , η and Y describes a surface
containing the manifold of all possible solutions. This man-
ifold is graphically represented in Fig. 2, where W , η and Y
are replaced by their definitions: Eq.(53), (54) and (55) and
the RHS constant have been evaluated at some arbitrary
layer inside the convective region. It is worth recalling here
that of the four temperature gradients that are involved,
i.e. ∇rad, ∇ad, ∇e, ∇, the adiabatic gradient ∇ad is always
known given the thermodynamical state of the medium, and
the radiative gradient ∇rad is known once the total flux is
specified (this is the typical case of convection in the outer
layers, where the MLT and/or the present theory are best
suited). We are left with the unknown gradients ∇e and ∇.
It goes without saying that the constant at RHS of Eq. (58),
∇rad and ∇ad depend on the position inside the star, so that
each layer has its own values for ∇e and ∇ #.

Figure 2. The manifold represent the surface of all the possible
solution for the convection equation. Surfaces of constant W , η
and Y are plotted but labelled with their corresponding defini-
tions:W in yellow, η in orange and Y in blue. The purple manifold
solution is computed for all the numerical values of interest for
stars on the left-side of the Hayashi-line in the HR-diagram.

Finally, in the case of a chemically non homogeneous
medium, ∇µ ̸= 0, after changing the definition of Y in Eq.
(55) to

Y ≡ ∇−∇e +
ϕ
δ
∇µ, (59)

we obtain a solution manifold in the form of Eq.(58) (but
with a different constant). Thus, an analogous theorem holds
in the case of a chemically non-homogeneous convectively-
unstable layer, which represents the mathematical proof of
the recent finding in numerical investigations by Tanner
et al. (2013).

6.3 Numerical solution: comparing the new
theory with the classical MLT

The previous theorem immediately suggests a time-
independent behaviour for the functions that are solutions
of our system of equations for stellar convection. Thus, we
expect a numerical integration of the system of equations
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Inserting now the first equation into the second one and
defining two auxiliary quantities depending only on the local
properties of the star

k ≡ acT3

κρ2cP
and g4 ≡ g

4
, (50)

we get:
⎧
⎪⎨

⎪⎩

(∇−∇e)
2

(∇e+2∇)(∇rad−∇) ξ̄e = k
3τg4

∇e−∇ad
∇−∇e

ξ̄2e = τk
∇e+2∇
∇−∇e

ξ̄e = g4χ̄.

(51)

Furthermore, taking the ratio of the first to the third equa-
tion and the ratio of second equation to the square of the
third one, after some algebraic manipulations we get:

⎧
⎨

⎩

(∇−∇e)
3

(∇e+2∇)2(∇rad−∇)
= 1

3τ
k

g24χ
(∇e−∇ad)(∇−∇e)

(∇e+2∇)2
= τ

χ
k

g24 χ̄
.

(52)

For each layer inside the convectively unstable region, we
define a few auxiliary variables:

W ≡ ∇rad −∇ad > 0, (53)

and

η ≡ ∇−∇ad, (54)

Y ≡ ∇−∇e. (55)

Using these expressions we can write

∇rad −∇ = W − η

∇e −∇ad = η − Y

∇e + 2∇ = −Y + 3 (η +∇ad) . (56)

Finally Eq.(52) yields the most important relation and result
of our study. We get

Y 2

(W − η) (η − Y )
=

1
3
χ̄
τ2

. (57)

which we need to solve for τ → ∞. But recalling Eq.(23),
the asymptotic temporal dependence of this relation (RHS
→ const. for τ → ∞) shows that convection inside stars
does not depend on time evolution and/or any spatial scale
parameter, to first order (i.e. it is independent from any the
mixing-length/mixing-time):

Y 2

(W − η) (η − Y )
= const. (58)

This equation in the space of W , η and Y describes a surface
containing the manifold of all possible solutions. This man-
ifold is graphically represented in Fig. 2, where W , η and Y
are replaced by their definitions: Eq.(53), (54) and (55) and
the RHS constant have been evaluated at some arbitrary
layer inside the convective region. It is worth recalling here
that of the four temperature gradients that are involved,
i.e. ∇rad, ∇ad, ∇e, ∇, the adiabatic gradient ∇ad is always
known given the thermodynamical state of the medium, and
the radiative gradient ∇rad is known once the total flux is
specified (this is the typical case of convection in the outer
layers, where the MLT and/or the present theory are best
suited). We are left with the unknown gradients ∇e and ∇.
It goes without saying that the constant at RHS of Eq. (58),
∇rad and ∇ad depend on the position inside the star, so that
each layer has its own values for ∇e and ∇ #.

Figure 2. The manifold represent the surface of all the possible
solution for the convection equation. Surfaces of constant W , η
and Y are plotted but labelled with their corresponding defini-
tions:W in yellow, η in orange and Y in blue. The purple manifold
solution is computed for all the numerical values of interest for
stars on the left-side of the Hayashi-line in the HR-diagram.

Finally, in the case of a chemically non homogeneous
medium, ∇µ ̸= 0, after changing the definition of Y in Eq.
(55) to

Y ≡ ∇−∇e +
ϕ
δ
∇µ, (59)

we obtain a solution manifold in the form of Eq.(58) (but
with a different constant). Thus, an analogous theorem holds
in the case of a chemically non-homogeneous convectively-
unstable layer, which represents the mathematical proof of
the recent finding in numerical investigations by Tanner
et al. (2013).

6.3 Numerical solution: comparing the new
theory with the classical MLT

The previous theorem immediately suggests a time-
independent behaviour for the functions that are solutions
of our system of equations for stellar convection. Thus, we
expect a numerical integration of the system of equations
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Inserting now the first equation into the second one and
defining two auxiliary quantities depending only on the local
properties of the star

k ≡ acT3

κρ2cP
and g4 ≡ g

4
, (50)

we get:
⎧
⎪⎨
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(∇−∇e)
2

(∇e+2∇)(∇rad−∇) ξ̄e = k
3τg4
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Furthermore, taking the ratio of the first to the third equa-
tion and the ratio of second equation to the square of the
third one, after some algebraic manipulations we get:
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For each layer inside the convectively unstable region, we
define a few auxiliary variables:

W ≡ ∇rad −∇ad > 0, (53)

and

η ≡ ∇−∇ad, (54)

Y ≡ ∇−∇e. (55)

Using these expressions we can write

∇rad −∇ = W − η

∇e −∇ad = η − Y

∇e + 2∇ = −Y + 3 (η +∇ad) . (56)

Finally Eq.(52) yields the most important relation and result
of our study. We get

Y 2

(W − η) (η − Y )
=

1
3
χ̄
τ2

. (57)

which we need to solve for τ → ∞. But recalling Eq.(23),
the asymptotic temporal dependence of this relation (RHS
→ const. for τ → ∞) shows that convection inside stars
does not depend on time evolution and/or any spatial scale
parameter, to first order (i.e. it is independent from any the
mixing-length/mixing-time):

Y 2

(W − η) (η − Y )
= const. (58)

This equation in the space of W , η and Y describes a surface
containing the manifold of all possible solutions. This man-
ifold is graphically represented in Fig. 2, where W , η and Y
are replaced by their definitions: Eq.(53), (54) and (55) and
the RHS constant have been evaluated at some arbitrary
layer inside the convective region. It is worth recalling here
that of the four temperature gradients that are involved,
i.e. ∇rad, ∇ad, ∇e, ∇, the adiabatic gradient ∇ad is always
known given the thermodynamical state of the medium, and
the radiative gradient ∇rad is known once the total flux is
specified (this is the typical case of convection in the outer
layers, where the MLT and/or the present theory are best
suited). We are left with the unknown gradients ∇e and ∇.
It goes without saying that the constant at RHS of Eq. (58),
∇rad and ∇ad depend on the position inside the star, so that
each layer has its own values for ∇e and ∇ #.

Figure 2. The manifold represent the surface of all the possible
solution for the convection equation. Surfaces of constant W , η
and Y are plotted but labelled with their corresponding defini-
tions:W in yellow, η in orange and Y in blue. The purple manifold
solution is computed for all the numerical values of interest for
stars on the left-side of the Hayashi-line in the HR-diagram.

Finally, in the case of a chemically non homogeneous
medium, ∇µ ̸= 0, after changing the definition of Y in Eq.
(55) to

Y ≡ ∇−∇e +
ϕ
δ
∇µ, (59)

we obtain a solution manifold in the form of Eq.(58) (but
with a different constant). Thus, an analogous theorem holds
in the case of a chemically non-homogeneous convectively-
unstable layer, which represents the mathematical proof of
the recent finding in numerical investigations by Tanner
et al. (2013).

6.3 Numerical solution: comparing the new
theory with the classical MLT

The previous theorem immediately suggests a time-
independent behaviour for the functions that are solutions
of our system of equations for stellar convection. Thus, we
expect a numerical integration of the system of equations
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Inserting now the first equation into the second one and
defining two auxiliary quantities depending only on the local
properties of the star

k ≡ acT3

κρ2cP
and g4 ≡ g

4
, (50)

we get:
⎧
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Furthermore, taking the ratio of the first to the third equa-
tion and the ratio of second equation to the square of the
third one, after some algebraic manipulations we get:

⎧
⎨

⎩

(∇−∇e)
3

(∇e+2∇)2(∇rad−∇)
= 1

3τ
k

g24χ
(∇e−∇ad)(∇−∇e)

(∇e+2∇)2
= τ

χ
k

g24 χ̄
.

(52)

For each layer inside the convectively unstable region, we
define a few auxiliary variables:

W ≡ ∇rad −∇ad > 0, (53)

and

η ≡ ∇−∇ad, (54)

Y ≡ ∇−∇e. (55)

Using these expressions we can write

∇rad −∇ = W − η

∇e −∇ad = η − Y

∇e + 2∇ = −Y + 3 (η +∇ad) . (56)

Finally Eq.(52) yields the most important relation and result
of our study. We get

Y 2

(W − η) (η − Y )
=

1
3
χ̄
τ2

. (57)

which we need to solve for τ → ∞. But recalling Eq.(23),
the asymptotic temporal dependence of this relation (RHS
→ const. for τ → ∞) shows that convection inside stars
does not depend on time evolution and/or any spatial scale
parameter, to first order (i.e. it is independent from any the
mixing-length/mixing-time):

Y 2

(W − η) (η − Y )
= const. (58)

This equation in the space of W , η and Y describes a surface
containing the manifold of all possible solutions. This man-
ifold is graphically represented in Fig. 2, where W , η and Y
are replaced by their definitions: Eq.(53), (54) and (55) and
the RHS constant have been evaluated at some arbitrary
layer inside the convective region. It is worth recalling here
that of the four temperature gradients that are involved,
i.e. ∇rad, ∇ad, ∇e, ∇, the adiabatic gradient ∇ad is always
known given the thermodynamical state of the medium, and
the radiative gradient ∇rad is known once the total flux is
specified (this is the typical case of convection in the outer
layers, where the MLT and/or the present theory are best
suited). We are left with the unknown gradients ∇e and ∇.
It goes without saying that the constant at RHS of Eq. (58),
∇rad and ∇ad depend on the position inside the star, so that
each layer has its own values for ∇e and ∇ #.

Figure 2. The manifold represent the surface of all the possible
solution for the convection equation. Surfaces of constant W , η
and Y are plotted but labelled with their corresponding defini-
tions:W in yellow, η in orange and Y in blue. The purple manifold
solution is computed for all the numerical values of interest for
stars on the left-side of the Hayashi-line in the HR-diagram.

Finally, in the case of a chemically non homogeneous
medium, ∇µ ̸= 0, after changing the definition of Y in Eq.
(55) to

Y ≡ ∇−∇e +
ϕ
δ
∇µ, (59)

we obtain a solution manifold in the form of Eq.(58) (but
with a different constant). Thus, an analogous theorem holds
in the case of a chemically non-homogeneous convectively-
unstable layer, which represents the mathematical proof of
the recent finding in numerical investigations by Tanner
et al. (2013).

6.3 Numerical solution: comparing the new
theory with the classical MLT

The previous theorem immediately suggests a time-
independent behaviour for the functions that are solutions
of our system of equations for stellar convection. Thus, we
expect a numerical integration of the system of equations
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corresponding equation of hydrostatic equilibrium reads

∇xP (ξ)
ρ (ξ)

∣∣∣∣
∥ξ∥→∞

= g (ξ)|∥ξ∥→∞

∇xP (ξ)
ρ (ξ)

∣∣∣∣
∥ξ∥→∞

= −∇Φg (ξ)|∥ξ∥→∞

P∞

ρ∞
+ Φ∞

g = 0 (15)

where the third equation holds by integration of the second
at equilibrium (i.e. ∂

∂t = 0) (see for instance Weiss et al.
2004; Kippenhahn et al. 2013)

If we consider now the unlikely situation in which the
convective element moves outward travelling through the
entire star preserving its identity till it reaches the outer
layers of the star, in the co-moving reference S1 the ele-
ment surface expands until it reaches the equilibrium with
the surrounding medium (note that this situation is also in
strong contradiction with the standard formulation of the
MLT). Thus the element reaches the kinetic limit opposite
to that considered in Eq.(13) where v ≫ ξ̇e, i.e. the element
surface does no longer expand and in S1 is static equilib-
rium (or in S0 the element rises with constant ξe). In this
case, the element is able to travel long distances keeping its
size unchanged (apart from an initial phase of oscillations
at the surface not to be mistaken with the Brunt-Vaisala
oscillations of the element position in the layers of a star
stable against convection)4. This situation does not apply
here because it is is ruled out by the conditions of Eq.(12).

We now call A∞ = A (x∞; t) the direction-dependent
relative acceleration between S1 and S0 to the same limit
where Eq.(12) holds. The behaviour of this term is compli-
cated and requires a careful treatment for which we reserve
all of Section 5. We assume here that this term is approx-
imatively constant for the physical system under consider-
ation and we will postpone till Section 5 a rigorous proof
of this assumption. Under this hypothesis we prove the fol-
lowing: Corollary 1: the asymptotic expansion equa-
tion for the convective element. In a stellar layer where
A∞ ∼= const., the expansion of the convective element is gov-
erned asymptotically in the time evolution by the following
equation:

ξ̈eξe +
3
2
ξ̇2e +

A∞ξe
2

= 0, (16)

Proof : When considering Eq.(15) it is simple to prove

that the LHS of Eq.(13) cancels: ρ
P∞

(
P
ρ + Φg

)
=

ρ
P∞

(
P+ρΦg

ρ

)
= ρ

P∞

(
P−P∞

ρ

)
= P

P∞ − 1 which goes to

zero as t > t̂ and ∥ξ∥ → ∞ because P → P∞ indepen-
dently from any angular dependence. Hence Theorem Eq.(8)
with Lemma 1 and this consideration results in the corollary
Eq.(16) and we conclude #.

The equation of this corollary rules the temporal asymp-
totic behaviour of the convective element. Its solution is a
difficult task achieved in the next section.

4 Note that in such a case it might be necessary to include the sur-
face tension by means of the Young-Laplace equation that must
be included in the EoM. This is not the limit of interest for us.

4.3 Solution of the equation for a convective
element in S1

As Eq. (16) governs the asymptotic evolution of any con-
vective element, it is important to cast it in a dimension-
less form and derive its most general solution. Even though
Eq.(16) looks relatively simple, actually it is not, because
of its high non-linearity. Indeed it contains two non-linear
terms for the dependent variable, ξ̈eξe and 3

2 ξ̇
2
e , and must be

coupled with another differential equation for the accelera-
tionA∞ = A (x∞; t) to form a system of two coupled PDEs.
To cope with this difficulty, we start recasting Eq.(16) by
means of dimensionless variables.

χ ≡ ξe
ξ0

and τ ≡ t
t0

, (17)

so that for any given initial size ξ0 of a convective element
at the initial time t = 0 in units of t0 we have

χ (0) = 1 and dχ(0)
dτ = 0 , (18)

according to which we have assumed that a generic convec-
tive element of any arbitrary size, starts expanding with zero
expansion velocity. We remark that this choice for the initial
conditions is arbitrary. As we are interested in the asymp-
totic behaviour of the solution (for τ ≫ τ̂ with τ̂ ≡ t̂

t0
), any

other initial conditions, such as χ(τ̂) = χ0 and dχ(τ̂)
dτ > 0,

would yield the same results. Therefore τ̂ can be chosen
arbitrarily close to “0” and considered as a dimension-less
parameter. With these assumptions we rewrite Eq.(16) as

χ
d2χ
dτ2

+
3
2

(
dχ
dτ

)2

+
A∞

2
t20
ξ0

χ = 0. (19)

In this equation the normalized acceleration is a function
of the time and position, the dependencies of which will be
investigated in detail in Section 5 below. In the previous Sec-
tion we have seen the relation between the condition Eq.(12)
and the reduced spatial motion travelled by a convective el-
ement. Here we assumed that:

A∞ (χ; τ) ∼= const. (20)

to solve Eq.(19), deferring a rigorous proof of this assump-
tion to a devoted corollary in the next section. At this point
one could try to find a numerical solution of the equations
as functions of time and space provided the temporal and
spatial evolution of the acceleration is known. However, this
way of proceeding would not improve significantly the the-
ory of convection. This goal can be achieved by pushing the
analytical analysis of the problem further. We complete to
put Eq.(19) in fully non-dimensional form by assuming

A∞

2
t20
ξ0

≡ 1
2
A∞

A∞
0

≡ −2 (21)

The reason for the last equality to −2 will become clear later
on: it simply allows us to account for the fact that in S1 the
acceleration of the convective element is only due to the
surface expansion and to the opposite motion of the intra-
stellar fluid on the surface of the convective element itself.
The factor 2 is introduced for mathematical convenience.
We proceed to

χ
d2χ
dτ2

+
3
2

(
dχ
dτ

)2

− 2χ = 0, (22)
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corresponding equation of hydrostatic equilibrium reads
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ρ (ξ)
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∥ξ∥→∞

= −∇Φg (ξ)|∥ξ∥→∞
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+ Φ∞

g = 0 (15)

where the third equation holds by integration of the second
at equilibrium (i.e. ∂

∂t = 0) (see for instance Weiss et al.
2004; Kippenhahn et al. 2013)

If we consider now the unlikely situation in which the
convective element moves outward travelling through the
entire star preserving its identity till it reaches the outer
layers of the star, in the co-moving reference S1 the ele-
ment surface expands until it reaches the equilibrium with
the surrounding medium (note that this situation is also in
strong contradiction with the standard formulation of the
MLT). Thus the element reaches the kinetic limit opposite
to that considered in Eq.(13) where v ≫ ξ̇e, i.e. the element
surface does no longer expand and in S1 is static equilib-
rium (or in S0 the element rises with constant ξe). In this
case, the element is able to travel long distances keeping its
size unchanged (apart from an initial phase of oscillations
at the surface not to be mistaken with the Brunt-Vaisala
oscillations of the element position in the layers of a star
stable against convection)4. This situation does not apply
here because it is is ruled out by the conditions of Eq.(12).

We now call A∞ = A (x∞; t) the direction-dependent
relative acceleration between S1 and S0 to the same limit
where Eq.(12) holds. The behaviour of this term is compli-
cated and requires a careful treatment for which we reserve
all of Section 5. We assume here that this term is approx-
imatively constant for the physical system under consider-
ation and we will postpone till Section 5 a rigorous proof
of this assumption. Under this hypothesis we prove the fol-
lowing: Corollary 1: the asymptotic expansion equa-
tion for the convective element. In a stellar layer where
A∞ ∼= const., the expansion of the convective element is gov-
erned asymptotically in the time evolution by the following
equation:

ξ̈eξe +
3
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2

= 0, (16)

Proof : When considering Eq.(15) it is simple to prove

that the LHS of Eq.(13) cancels: ρ
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P
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=
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ρ

)
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)
= P

P∞ − 1 which goes to

zero as t > t̂ and ∥ξ∥ → ∞ because P → P∞ indepen-
dently from any angular dependence. Hence Theorem Eq.(8)
with Lemma 1 and this consideration results in the corollary
Eq.(16) and we conclude #.

The equation of this corollary rules the temporal asymp-
totic behaviour of the convective element. Its solution is a
difficult task achieved in the next section.

4 Note that in such a case it might be necessary to include the sur-
face tension by means of the Young-Laplace equation that must
be included in the EoM. This is not the limit of interest for us.

4.3 Solution of the equation for a convective
element in S1

As Eq. (16) governs the asymptotic evolution of any con-
vective element, it is important to cast it in a dimension-
less form and derive its most general solution. Even though
Eq.(16) looks relatively simple, actually it is not, because
of its high non-linearity. Indeed it contains two non-linear
terms for the dependent variable, ξ̈eξe and 3

2 ξ̇
2
e , and must be

coupled with another differential equation for the accelera-
tionA∞ = A (x∞; t) to form a system of two coupled PDEs.
To cope with this difficulty, we start recasting Eq.(16) by
means of dimensionless variables.

χ ≡ ξe
ξ0

and τ ≡ t
t0

, (17)

so that for any given initial size ξ0 of a convective element
at the initial time t = 0 in units of t0 we have

χ (0) = 1 and dχ(0)
dτ = 0 , (18)

according to which we have assumed that a generic convec-
tive element of any arbitrary size, starts expanding with zero
expansion velocity. We remark that this choice for the initial
conditions is arbitrary. As we are interested in the asymp-
totic behaviour of the solution (for τ ≫ τ̂ with τ̂ ≡ t̂

t0
), any

other initial conditions, such as χ(τ̂) = χ0 and dχ(τ̂)
dτ > 0,

would yield the same results. Therefore τ̂ can be chosen
arbitrarily close to “0” and considered as a dimension-less
parameter. With these assumptions we rewrite Eq.(16) as

χ
d2χ
dτ2

+
3
2

(
dχ
dτ

)2

+
A∞

2
t20
ξ0

χ = 0. (19)

In this equation the normalized acceleration is a function
of the time and position, the dependencies of which will be
investigated in detail in Section 5 below. In the previous Sec-
tion we have seen the relation between the condition Eq.(12)
and the reduced spatial motion travelled by a convective el-
ement. Here we assumed that:

A∞ (χ; τ) ∼= const. (20)

to solve Eq.(19), deferring a rigorous proof of this assump-
tion to a devoted corollary in the next section. At this point
one could try to find a numerical solution of the equations
as functions of time and space provided the temporal and
spatial evolution of the acceleration is known. However, this
way of proceeding would not improve significantly the the-
ory of convection. This goal can be achieved by pushing the
analytical analysis of the problem further. We complete to
put Eq.(19) in fully non-dimensional form by assuming

A∞

2
t20
ξ0

≡ 1
2
A∞

A∞
0

≡ −2 (21)

The reason for the last equality to −2 will become clear later
on: it simply allows us to account for the fact that in S1 the
acceleration of the convective element is only due to the
surface expansion and to the opposite motion of the intra-
stellar fluid on the surface of the convective element itself.
The factor 2 is introduced for mathematical convenience.
We proceed to

χ
d2χ
dτ2

+
3
2

(
dχ
dτ

)2

− 2χ = 0, (22)
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Inserting now the first equation into the second one and
defining two auxiliary quantities depending only on the local
properties of the star

k ≡ acT3

κρ2cP
and g4 ≡ g

4
, (50)

we get:
⎧
⎪⎨

⎪⎩

(∇−∇e)
2

(∇e+2∇)(∇rad−∇) ξ̄e = k
3τg4

∇e−∇ad
∇−∇e

ξ̄2e = τk
∇e+2∇
∇−∇e

ξ̄e = g4χ̄.

(51)

Furthermore, taking the ratio of the first to the third equa-
tion and the ratio of second equation to the square of the
third one, after some algebraic manipulations we get:

⎧
⎨

⎩

(∇−∇e)
3

(∇e+2∇)2(∇rad−∇)
= 1

3τ
k

g24χ
(∇e−∇ad)(∇−∇e)

(∇e+2∇)2
= τ

χ
k

g24 χ̄
.

(52)

For each layer inside the convectively unstable region, we
define a few auxiliary variables:

W ≡ ∇rad −∇ad > 0, (53)

and

η ≡ ∇−∇ad, (54)

Y ≡ ∇−∇e. (55)

Using these expressions we can write

∇rad −∇ = W − η

∇e −∇ad = η − Y

∇e + 2∇ = −Y + 3 (η +∇ad) . (56)

Finally Eq.(52) yields the most important relation and result
of our study. We get

Y 2

(W − η) (η − Y )
=

1
3
χ̄
τ2

. (57)

which we need to solve for τ → ∞. But recalling Eq.(23),
the asymptotic temporal dependence of this relation (RHS
→ const. for τ → ∞) shows that convection inside stars
does not depend on time evolution and/or any spatial scale
parameter, to first order (i.e. it is independent from any the
mixing-length/mixing-time):

Y 2

(W − η) (η − Y )
= const. (58)

This equation in the space of W , η and Y describes a surface
containing the manifold of all possible solutions. This man-
ifold is graphically represented in Fig. 2, where W , η and Y
are replaced by their definitions: Eq.(53), (54) and (55) and
the RHS constant have been evaluated at some arbitrary
layer inside the convective region. It is worth recalling here
that of the four temperature gradients that are involved,
i.e. ∇rad, ∇ad, ∇e, ∇, the adiabatic gradient ∇ad is always
known given the thermodynamical state of the medium, and
the radiative gradient ∇rad is known once the total flux is
specified (this is the typical case of convection in the outer
layers, where the MLT and/or the present theory are best
suited). We are left with the unknown gradients ∇e and ∇.
It goes without saying that the constant at RHS of Eq. (58),
∇rad and ∇ad depend on the position inside the star, so that
each layer has its own values for ∇e and ∇ #.

Figure 2. The manifold represent the surface of all the possible
solution for the convection equation. Surfaces of constant W , η
and Y are plotted but labelled with their corresponding defini-
tions:W in yellow, η in orange and Y in blue. The purple manifold
solution is computed for all the numerical values of interest for
stars on the left-side of the Hayashi-line in the HR-diagram.

Finally, in the case of a chemically non homogeneous
medium, ∇µ ̸= 0, after changing the definition of Y in Eq.
(55) to

Y ≡ ∇−∇e +
ϕ
δ
∇µ, (59)

we obtain a solution manifold in the form of Eq.(58) (but
with a different constant). Thus, an analogous theorem holds
in the case of a chemically non-homogeneous convectively-
unstable layer, which represents the mathematical proof of
the recent finding in numerical investigations by Tanner
et al. (2013).

6.3 Numerical solution: comparing the new
theory with the classical MLT

The previous theorem immediately suggests a time-
independent behaviour for the functions that are solutions
of our system of equations for stellar convection. Thus, we
expect a numerical integration of the system of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕrad|cnd = 4ac
3

T4

κhP ρ∇
ϕrad|cnd + ϕcnv = 4ac

3
T4

κhP ρ∇rad

v̄2

4ξe
= ∇−∇e

3hP
2δv̄τ +∇e+2∇

g4

ϕcnv = 1
2ρcPT (∇−∇e) v̄2τ

hP
∇e−∇ad
∇−∇e

= 4acT3

κρ2cP

τ
ξ̄2e

ξ̄e = ∇−∇e
3hP
2δv̄τ +∇e+2∇

g4χ̄ (τ) ,

(60)
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Inserting now the first equation into the second one and
defining two auxiliary quantities depending only on the local
properties of the star

k ≡ acT3

κρ2cP
and g4 ≡ g

4
, (50)

we get:
⎧
⎪⎨

⎪⎩

(∇−∇e)
2

(∇e+2∇)(∇rad−∇) ξ̄e = k
3τg4

∇e−∇ad
∇−∇e

ξ̄2e = τk
∇e+2∇
∇−∇e

ξ̄e = g4χ̄.

(51)

Furthermore, taking the ratio of the first to the third equa-
tion and the ratio of second equation to the square of the
third one, after some algebraic manipulations we get:

⎧
⎨

⎩

(∇−∇e)
3

(∇e+2∇)2(∇rad−∇)
= 1

3τ
k

g24χ
(∇e−∇ad)(∇−∇e)

(∇e+2∇)2
= τ

χ
k

g24 χ̄
.

(52)

For each layer inside the convectively unstable region, we
define a few auxiliary variables:

W ≡ ∇rad −∇ad > 0, (53)

and

η ≡ ∇−∇ad, (54)

Y ≡ ∇−∇e. (55)

Using these expressions we can write

∇rad −∇ = W − η

∇e −∇ad = η − Y

∇e + 2∇ = −Y + 3 (η +∇ad) . (56)

Finally Eq.(52) yields the most important relation and result
of our study. We get

Y 2

(W − η) (η − Y )
=

1
3
χ̄
τ2

. (57)

which we need to solve for τ → ∞. But recalling Eq.(23),
the asymptotic temporal dependence of this relation (RHS
→ const. for τ → ∞) shows that convection inside stars
does not depend on time evolution and/or any spatial scale
parameter, to first order (i.e. it is independent from any the
mixing-length/mixing-time):

Y 2

(W − η) (η − Y )
= const. (58)

This equation in the space of W , η and Y describes a surface
containing the manifold of all possible solutions. This man-
ifold is graphically represented in Fig. 2, where W , η and Y
are replaced by their definitions: Eq.(53), (54) and (55) and
the RHS constant have been evaluated at some arbitrary
layer inside the convective region. It is worth recalling here
that of the four temperature gradients that are involved,
i.e. ∇rad, ∇ad, ∇e, ∇, the adiabatic gradient ∇ad is always
known given the thermodynamical state of the medium, and
the radiative gradient ∇rad is known once the total flux is
specified (this is the typical case of convection in the outer
layers, where the MLT and/or the present theory are best
suited). We are left with the unknown gradients ∇e and ∇.
It goes without saying that the constant at RHS of Eq. (58),
∇rad and ∇ad depend on the position inside the star, so that
each layer has its own values for ∇e and ∇ #.

Figure 2. The manifold represent the surface of all the possible
solution for the convection equation. Surfaces of constant W , η
and Y are plotted but labelled with their corresponding defini-
tions:W in yellow, η in orange and Y in blue. The purple manifold
solution is computed for all the numerical values of interest for
stars on the left-side of the Hayashi-line in the HR-diagram.

Finally, in the case of a chemically non homogeneous
medium, ∇µ ̸= 0, after changing the definition of Y in Eq.
(55) to

Y ≡ ∇−∇e +
ϕ
δ
∇µ, (59)

we obtain a solution manifold in the form of Eq.(58) (but
with a different constant). Thus, an analogous theorem holds
in the case of a chemically non-homogeneous convectively-
unstable layer, which represents the mathematical proof of
the recent finding in numerical investigations by Tanner
et al. (2013).

6.3 Numerical solution: comparing the new
theory with the classical MLT

The previous theorem immediately suggests a time-
independent behaviour for the functions that are solutions
of our system of equations for stellar convection. Thus, we
expect a numerical integration of the system of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕrad|cnd = 4ac
3

T4

κhP ρ∇
ϕrad|cnd + ϕcnv = 4ac

3
T4

κhP ρ∇rad

v̄2

4ξe
= ∇−∇e

3hP
2δv̄τ +∇e+2∇

g4

ϕcnv = 1
2ρcPT (∇−∇e) v̄2τ

hP
∇e−∇ad
∇−∇e

= 4acT3

κρ2cP

τ
ξ̄2e

ξ̄e = ∇−∇e
3hP
2δv̄τ +∇e+2∇

g4χ̄ (τ) ,

(60)
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Outcome of the reduction of dimensionality

• The new system of equations has a 
new invariant manifold on which 
all the solutions live

• The temperature gradients 
at each point
in any star 

are located on this manifold

• "Theorem of Unicity”:
a relation between the 
4 fundamental gradients 
that govern the energy transfer 
inside a star.
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Another important consequence
• The treatment leads to a non-hydrostatic equilibrium theory, 

hence non-hydrostatic equilibrium models of atmospheres

• This is a fundamental advance on the MLT where equilibrium is 
assumed to be reached at the end of the bubble movement 
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corresponding equation of hydrostatic equilibrium reads

∇xP (ξ)
ρ (ξ)

∣∣∣∣
∥ξ∥→∞

= g (ξ)|∥ξ∥→∞

∇xP (ξ)
ρ (ξ)

∣∣∣∣
∥ξ∥→∞

= −∇Φg (ξ)|∥ξ∥→∞

P∞

ρ∞
+ Φ∞

g = 0 (15)

where the third equation holds by integration of the second
at equilibrium (i.e. ∂

∂t = 0) (see for instance Weiss et al.
2004; Kippenhahn et al. 2013)

If we consider now the unlikely situation in which the
convective element moves outward travelling through the
entire star preserving its identity till it reaches the outer
layers of the star, in the co-moving reference S1 the ele-
ment surface expands until it reaches the equilibrium with
the surrounding medium (note that this situation is also in
strong contradiction with the standard formulation of the
MLT). Thus the element reaches the kinetic limit opposite
to that considered in Eq.(13) where v ≫ ξ̇e, i.e. the element
surface does no longer expand and in S1 is static equilib-
rium (or in S0 the element rises with constant ξe). In this
case, the element is able to travel long distances keeping its
size unchanged (apart from an initial phase of oscillations
at the surface not to be mistaken with the Brunt-Vaisala
oscillations of the element position in the layers of a star
stable against convection)4. This situation does not apply
here because it is is ruled out by the conditions of Eq.(12).

We now call A∞ = A (x∞; t) the direction-dependent
relative acceleration between S1 and S0 to the same limit
where Eq.(12) holds. The behaviour of this term is compli-
cated and requires a careful treatment for which we reserve
all of Section 5. We assume here that this term is approx-
imatively constant for the physical system under consider-
ation and we will postpone till Section 5 a rigorous proof
of this assumption. Under this hypothesis we prove the fol-
lowing: Corollary 1: the asymptotic expansion equa-
tion for the convective element. In a stellar layer where
A∞ ∼= const., the expansion of the convective element is gov-
erned asymptotically in the time evolution by the following
equation:

ξ̈eξe +
3
2
ξ̇2e +

A∞ξe
2

= 0, (16)

Proof : When considering Eq.(15) it is simple to prove

that the LHS of Eq.(13) cancels: ρ
P∞

(
P
ρ + Φg

)
=

ρ
P∞

(
P+ρΦg

ρ

)
= ρ

P∞

(
P−P∞

ρ

)
= P

P∞ − 1 which goes to

zero as t > t̂ and ∥ξ∥ → ∞ because P → P∞ indepen-
dently from any angular dependence. Hence Theorem Eq.(8)
with Lemma 1 and this consideration results in the corollary
Eq.(16) and we conclude #.

The equation of this corollary rules the temporal asymp-
totic behaviour of the convective element. Its solution is a
difficult task achieved in the next section.

4 Note that in such a case it might be necessary to include the sur-
face tension by means of the Young-Laplace equation that must
be included in the EoM. This is not the limit of interest for us.

4.3 Solution of the equation for a convective
element in S1

As Eq. (16) governs the asymptotic evolution of any con-
vective element, it is important to cast it in a dimension-
less form and derive its most general solution. Even though
Eq.(16) looks relatively simple, actually it is not, because
of its high non-linearity. Indeed it contains two non-linear
terms for the dependent variable, ξ̈eξe and 3

2 ξ̇
2
e , and must be

coupled with another differential equation for the accelera-
tionA∞ = A (x∞; t) to form a system of two coupled PDEs.
To cope with this difficulty, we start recasting Eq.(16) by
means of dimensionless variables.

χ ≡ ξe
ξ0

and τ ≡ t
t0

, (17)

so that for any given initial size ξ0 of a convective element
at the initial time t = 0 in units of t0 we have

χ (0) = 1 and dχ(0)
dτ = 0 , (18)

according to which we have assumed that a generic convec-
tive element of any arbitrary size, starts expanding with zero
expansion velocity. We remark that this choice for the initial
conditions is arbitrary. As we are interested in the asymp-
totic behaviour of the solution (for τ ≫ τ̂ with τ̂ ≡ t̂

t0
), any

other initial conditions, such as χ(τ̂) = χ0 and dχ(τ̂)
dτ > 0,

would yield the same results. Therefore τ̂ can be chosen
arbitrarily close to “0” and considered as a dimension-less
parameter. With these assumptions we rewrite Eq.(16) as

χ
d2χ
dτ2

+
3
2

(
dχ
dτ

)2

+
A∞

2
t20
ξ0

χ = 0. (19)

In this equation the normalized acceleration is a function
of the time and position, the dependencies of which will be
investigated in detail in Section 5 below. In the previous Sec-
tion we have seen the relation between the condition Eq.(12)
and the reduced spatial motion travelled by a convective el-
ement. Here we assumed that:

A∞ (χ; τ) ∼= const. (20)

to solve Eq.(19), deferring a rigorous proof of this assump-
tion to a devoted corollary in the next section. At this point
one could try to find a numerical solution of the equations
as functions of time and space provided the temporal and
spatial evolution of the acceleration is known. However, this
way of proceeding would not improve significantly the the-
ory of convection. This goal can be achieved by pushing the
analytical analysis of the problem further. We complete to
put Eq.(19) in fully non-dimensional form by assuming

A∞

2
t20
ξ0

≡ 1
2
A∞

A∞
0

≡ −2 (21)

The reason for the last equality to −2 will become clear later
on: it simply allows us to account for the fact that in S1 the
acceleration of the convective element is only due to the
surface expansion and to the opposite motion of the intra-
stellar fluid on the surface of the convective element itself.
The factor 2 is introduced for mathematical convenience.
We proceed to

χ
d2χ
dτ2

+
3
2

(
dχ
dτ

)2

− 2χ = 0, (22)
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Figure 7. Structure of the outer layers of the Sun. Solar fluxes and temperature gradients profiles for the internal convective stratification
of the star. The upper panels show the radiative flux ϕrad|cnd (left) and the convective flux ϕcnv (right). The bottom panels display the
element gradient ∇e (left) and the ambient gradient ∇ (right). The red lines refer to SFC theory whereas the black lines to the ML
theory.

atmospheres. All the input physics, i.e. opacities (radiative
conductive and molecular), nuclear reaction rates, equation
of state, and the prescription for convective overshooting
from the core are as described by Bertelli et al. (2008), to
whom the reader should refer for all details. In particular,
it is worth recalling that the treatment of core overshooting
relies on Bressan et al. (1981) that stands on the ML theory
(to derive the velocity of convective elements) and makes use
of the ML parameter Λc = 0.5 for all masses M∗ ! 1.5M⊙,
Λc = 0 for stars with mass M∗ " 1M⊙, and finally Λc =
M∗/M⊙ − 1.0 for stars in the interval 1.0 < M∗/M⊙ " 1.5.
Overshooting from the bottom of the convective envelope
along the RGB follows from Alongi et al. (1991) with Λe =
0.25. Therefore, the interiors are calculated according to the
classical prescription, whereas the outer layers are treated
according to the SFC theory. This is an intermediate step
towards the correct approach in which convective overshoot

in the internal regions is treated in the framework of SFC
theory.

We note that an obvious drawback of using the
Bertelli et al. (1994) code is that the input physics is some-
what out of date with respect to more recent versions of
the same code, eg. Nasi et al. (2008), Bertelli et al. (2008),
Bertelli et al. (2009), and finally the very recent revision of
the whole code by Bressan et al. (2012), Chen et al. (2014)
and Tang et al. (2014). The choice of the Bertelli et al.
(1994) code is motivated by the large body of stellar models
calculated with this and worldwide used. In any case, this
satisfactorily permits the comparison of stellar models with
the same code, input physics and both ML theory and SFC
theory. Work is under way to calculate new grids of stellar
models with SFC theory using an independent code with
very modern input physics i.e. the Garching code named
GARSTEC by Weiss & Schlattl (2008).

c⃝ 2015 RAS, MNRAS 000, 1–22

Results (1): outer convective layers

Solar Model
Bertelli et al. (2008) 

black: MLT (L = 1.68)
red: this work

surface surface

expanded pressure scale
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Results (2): outer convective layers

2M⊙RGB star
log L/L⊙ =2.598, log Teff =3.593 
Bertelli et al. (2008) 

black: MLT (L = 1.68)
red: this work

surface surface
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Figure 8. The same as in Fig 7 but for the 2M⊙ in a late stage along the RGB, logL/L⊙=2.598 and log Teff=3.593.

For the purposes of this exploratory investigation we
present here five evolutionary sequences for stars of initial
mass 0.8, 1.0, 1.5, 2.0, and 2.5 M⊙ and chemical composi-
tion [X = 0.703, Y = 0.280, Z = 0.017] calculated from the
main sequence to advanced evolutionary stages using both
the classical ML theory (Λm = 1.68 in our case) and the SFC
theory. The 0.8, 1.0, and 1.5 M⊙ sequences are indicative of
the old stars in Globular Clusters and very old Open Clus-
ters, whereas the 2.0 and 2.5 M⊙ sequences correspond to
intermediate age Globular and Open clusters. The 2.0 M⊙

is the last low mass star of the adopted chemical compo-
sition undergoing core He-Flash (Bertelli et al. 2008). The
HR Diagram is shown in Fig. 9, where the grey dots indicate
the sequences with the ML theory and the dotted lines of
different colours show those with the SFC theory. The 0.8,
1.0, 1.5, and 2.0 M⊙ models are carried to a late stage of
the RGB before core He-ignition (He-Flash), whereas the
2.5 M⊙ is evolved up to very advanced stages of central
He-burning, Yc ≃ 0.1 (no He-Flash has occurred). The corre-

sponding models with the classical ML theory (dotted paths)
are taken from Bertelli et al. (2008).

In general the two sets of models are in close agree-
ment. However looking at the results in some detail, the
new tracks tends to have a slightly different inclination of
the RGB. The SFC tracks are nearly identical to those of the
ML theory at the bottom and progressively becomes redder
towards the top, i.e. the RGBs of the low mass stars are less
steep than those of the classical MLT models. Looking at
the case of the 1M⊙ star, the MLT model are calculated
with Λm = 1.68 upon calibration on the Sun and kept con-
stant up to the end of the RGB and afterwards. The models
with the SFC theory do not require the mixing length pa-
rameter but fully agree with the MLT ones during the core
H-Burning phase but by the time they reach the RGB tip
they would be in better agreement with MLT models with a
smaller values of the mixing length parameter. The required
decrease of Λm is difficult to quantify at the is stage of model
calculations. However, it agrees with the analysis made by

c⃝ 2015 RAS, MNRAS 000, 1–22
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Outer convective layers: comparison
• For Solar model:

– good agreement for convective and radiative fluxes throughout
– temperature gradients are in good agreement except for surface 

layers
Reason: treatment incomplete at the boundary

• For 2M⊙ model:
– good agreement for convective fluxes
– divergence to lower boundary for radiative fluxes

Reason: these solutions are not constrained to match the inner
solution at the transition layer

– temperature gradients as for Solar model

• To constrain the inner solution, need to calculate full stellar models

• For these full calculations, Mixing Length Theory used for the interiors 
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Figure 9. The HRD of the 0.8, 1.0, 1.5, 2.0, and 2.5 M⊙ stars with initial chemical composition [X = 0.703, Y = 0.280, Z = 0.017]
calculated from the main sequence to advanced evolutionary stages using both the classical ML theory (the crossed lines) and the SFC
theory (dotted lines of different colors). The 0.8, 1.0, 1.5 and 2.0 M⊙ models are carried to a late stage of the RGB before core He-ignition
(He-Flash), whereas the 2.5 M⊙ is evolved up to very advanced stages of central He-burning (Yc ≃ 0.1). The stellar models are calculated
with the Padova code and input physics used by Bertelli et al. (1994) and Bertelli et al. (2008), see also the text for more details. The
models are meant to prove doubt that that the SFC theory with no ML parameter is perfectly equivalent to the classical ML theory with
calibrated ML parameter (Λm = 1.68 in our case).

with Magic et al. (2015) of 3D radiative hydrodynamic sim-
ulations of convection in the envelopes of late-type stars in
terms of the 1D classical ML theory. Using different calibra-
tors and mapping the results a s function of gravity, effective
and effective temperature Magic et al. (2015) find that at
given gravity the ML parameter increases with decreasing
effective temperature, the opposite at given effective tem-
perature and decreasing gravity. There are also additional
dependencies on metallicity and stellar mass that we leave
aside here. Looking at the case of the Sun, passing from the
main sequence to a late stage on the RGB, the ML is found
to decrease by as much as about 10 percent. Applying this
to stellar models, a less steep RGB would result as shown
by our model calculations with the SFC theory. Owing to
the complexity of the new SFC theory with respect to the
classical ML theory, the results are very promising. These
preliminary model calculations show that that the SFC the-
ory with no ML parameter is equivalent to the classical ML
theory with calibrated ML. More work is necessary to estab-
lish a quantitative correspondence between the two theories
of convection.

7 CONCLUSIONS AND FUTURE WORK

We have presented here the first results of the integration
of stellar atmospheres and exploratory full stellar models to
which the new convection theory developed by Pasetto et al.
(2014) has been applied. To this aim, a mathematical and
computational algorithm and a companion code have been
developed to integrate the system of equations governing the
convective and radiative fluxes, the temperature gradients
of the medium and elements and finally, the typical veloc-
ity and dimensions of the radial and expansion/contraction
motion of convective elements. In parallel we have also cal-
culated the same quantities with the standard ML theory in
which the ML parameter has been previously calibrated. All
the results obtained with ML theory are recovered with the
new theory but no scale parameters are adopted. We claim
that the new theory is able to capture the essence of the
convection in stellar interiors without a fine-tuned parame-
ter inserted by hand.

The main achievement of the theory presented in this
paper is not only to prove that satisfactory results can be
achieved, as was already done by the ML theory, but more
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calculated from the main sequence to advanced evolutionary stages using both the classical ML theory (the crossed lines) and the SFC
theory (dotted lines of different colors). The 0.8, 1.0, 1.5 and 2.0 M⊙ models are carried to a late stage of the RGB before core He-ignition
(He-Flash), whereas the 2.5 M⊙ is evolved up to very advanced stages of central He-burning (Yc ≃ 0.1). The stellar models are calculated
with the Padova code and input physics used by Bertelli et al. (1994) and Bertelli et al. (2008), see also the text for more details. The
models are meant to prove doubt that that the SFC theory with no ML parameter is perfectly equivalent to the classical ML theory with
calibrated ML parameter (Λm = 1.68 in our case).
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ory with no ML parameter is equivalent to the classical ML
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developed to integrate the system of equations governing the
convective and radiative fluxes, the temperature gradients
of the medium and elements and finally, the typical veloc-
ity and dimensions of the radial and expansion/contraction
motion of convective elements. In parallel we have also cal-
culated the same quantities with the standard ML theory in
which the ML parameter has been previously calibrated. All
the results obtained with ML theory are recovered with the
new theory but no scale parameters are adopted. We claim
that the new theory is able to capture the essence of the
convection in stellar interiors without a fine-tuned parame-
ter inserted by hand.

The main achievement of the theory presented in this
paper is not only to prove that satisfactory results can be
achieved, as was already done by the ML theory, but more
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Note: away from the well-calibrated cases, care should be exercised in 
which approach is the considered to be the reference.
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Full stellar models: Overshooting

• The new theory does not yet include overshooting

• However, it derives the acceleration acquired by convective elements 
under the action of the buoyancy force 
in presence of the inertia of the displaced fluid and gravity. 

• Therefore, it is also best suited to describe convective overshooting 

• Extension of the atmospheric modelling to include overshooting is in 
preparation (Pasetto et al 2017)
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Summary
• The correct treatment of convection is critical for stellar models 

throughout the H-R diagram
• The current standard approach using Mixing Length Theory requires

– an additional relation not justified within the theory
– with a calibration which is not universal

• A self consistent theory has been derived which allows the system of 
equations to be closed – this depends on
– a formulation within co-moving coordinates
– a new definition of the stability criterion
– an identification of a growth-rate relation which allows the elimination 

of one of the variables in the formulation
• The new theory agrees closely with the MLT in the case of the Sun where 

the MLT is well-calibrated
• The new theory predicts sensible stellar evolutionary tracks, which may 

already be better than MLT outside where this is calibrated.

• The new theory can be extended to be applied broadly 
(geology, meteorology, oceanography) with the addition of viscosity terms


