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Two-dimensional Stellar Evolution: 2DStars
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Science godl

The goal is to develop a general-use 2D, adaptable to 3D, stellar
evolution code (izzard 2015) to model a variety of multi-dimensional
phenomena in the evolution of single and binary stars.
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Rotating stars

A large fraction of stars rotate rapidly, are not

spherical and exhibit surface temperature variations.

» The centrifugal force caused by rotation
changes the hydrostatic balance, which alters
the structure. This affects intrinsic stellar properties
like luminosity (Potter + 2012), oscillation frequencies
(Reese 2019) ...

» Rotafion introduces a brightness asymmetry due
to the variation in the flux flowing through the
surface as a function of latitude (von Zeipel’s
theorem: higher radiative flux at higher latitudes).

Actual image of Altair from the
CHARA Interferometer
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Credit: Ming Zhao (University of Michigan)

Left: Surface temperature variations and aspherical distortion in the rapidly
rotating A-type star Altair.

Right: Reconstructed image with intensities converted into the
corresponding blackbody temperatures shown as contours (Monnier+2007).

Altair rotates at 90% of its breakup velocity
with a period of 9 hours (2.8 rev/day). This
causes the equator to bulge and darken
(cooler). I, = 60% | 0c-




Rotating stars contd

» Rotation alters the stellar chemistry by developing internal currents (such as the meridional Eddington-Sweet
circulation)

» It couples to magnetic fields, commonly referred to as an a - Q dynamo (Schmalz & Stix 1991, Potter, Chitre & Tout 2012).

» It may affect mass-loss or cause wind anisotropies: g effect/ k4 effect (Maeder & Meynet 2000).

Stellar evolution is a function of M, Z and Q.

Thus, stars can only be modelled properly in multi-dimensions.



State-of-the-art

1.

>
>
>

>

vV v.v.v D

1D codes simplifications:
First models assumed solid body rotation Q = cnst.

Differential rotation: Q(r) = cnst on isobars (shellular roto#

2D codes:
Roxburgh (2004): non-evolvin

. 3D codes:

Djehuty (Dearborn+ 2006). hydrodynamical code (ideal for rapid phenomena but not to evolve a star).



Setup & Input physics

We are interested in the evolution (nuclear/thermal time scale) i.e. that of the order of the stellar lifetime.
Initial setup: A that evolves in time, for a given set of initial conditions.
and slow internal fluid rotation-driven flows including meridional circulation will be modelled consistently.

Initially ignored but to be included later as they enforce co-rotation and couple stellar cores to
their envelopes.

Fast mixing (convection, horizontal turbulence...) will be parameterized. Work on 2D MLT is currently
underway (Jermyn, Tout, Chitre & LeSaffre).

Material accretes through an accretion disc which should be modelled in 2D.



Application Il

Mass Transfer in Close Binaries

Formation of an accretion disc by Roche-lobe overflow from
the giant companion star.

It is suggested that oblate distortion of rotating WDs drive
latitude-dependent abundance gradients that may affect
dust formation following a nova ejection (Scott 2000) (prolate
ejecta?).

2D models may provide important feedback on the
accretion process preceding the synthesis of C-rich dust in
CO nova ourbursts.

Image credits:
https://trkendall.wordpress.com
S. Wiessinger/Nasa Goddard Space Flight Center



IR novae observations: C-rich dust

25 classical novae from IR measurements (Gehrz+1998)

NOVA Aqgl1982 NOVA Aql 1995
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* Nova Year
FH Ser .............. 1970
V1229 Aql ......... 1970
V1301 Aql ......... 1975
V1500 Cyg® ........ 1975
NQ Vul ............. 1976
V4021 Sgr .......... 1977
LW Ser ............. 1978
V1668 Cyg ......... 1978
V1370 Aqld ........ 1982
Simbad GQMus ............ 1983
PW Vul ............. 1984 #1
:gvs;\;;ﬁ:; QU vul* ............ 1984 #2
; OS And*™® ........... 1986
The presence of C-rich dust in nova vy B e
ejecta (SiC, C) has been observed Xjfgngr“ ~~~~~~~~~~ 132;
)
(Gehrz+ 1993,1998, 1999, Starrfield+ 1997) and Qv Vul% ____________ 1987
is established from spectroscopic LME 1985 #1 oo 1988 #1
LMC 1988 #2 ...... 1988 #2
measurements (José+ 2014). V2214 Oph ......... 1988
V838 Her ........... 1991
V1974 Cyg* ........ 1992
V705 Cas ........... 1993

Credit: Max Planck Institute

Aqgl 1995* ........... 1995
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How is C-rich ejecta produced?

Determinant
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Most calculations obtain O>C
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Inconsistent with the observation of C-rich dust
reported in some Novae José+ (2004).

https://geosci.uchicago.edu/people/andrew-m.-davis



Traditionally, nova models
assumed that the CO WD
hosting the outburst has
X(12¢) = X(160) ~ 0.5
(Salaris+ 1996)



New models: UpdGTed CO WDs (project led by Jordi Jose)
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Chemical profiles of an 8M, star, after a series of thermall

pulses, computed with the HYADES code (Halabi & El Eid 2015).

Mean composition of the ejecta (CNO-group).

+ Model 6:

WD material: C/O=1

Model  '*C BC N BN 160 0 B0 % Ejecta
1 290-2 756-2 1.06-1 842-3 385-2 836-4 5.27-7% C-rich
2 889-3 143-2 356-2 2733 562-3 1464 923-8 #C-rich
3 204-3 3.02-3 7.21-3 5264 3074 946-6 652-9 *C-rich
4 1.79-3 266-3 7.73-3 4044 3924 101-5 7.199 €-rich
5 1.63-3 247-3 8083 3444 5094 1.14-5 8249 C-rich
6 2052 4.17-2 8202 7263 1.17-1 2753 1.72-6 O-rich




Why is this finding important?
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It explains the presence of observed C-rich nova ejecta

% It extends the possible contribution of novae to the inventory of carbonous presolar grains
(diamonds, silicon carbides and graphites)

% C-rich ejecta in nova outbursts may also account for the origin of C-rich J-type stars (10-
15% of the observed C stars in our Galaxy and in the LMC) (Sengupta, Izzard, & Lau 2013)

“» More realistic models yield more realistic results.

José, J., Halabi G. M. & El Eid, M. (2016) Accepted to A&A
(arXiv:1606.05438)



What we have so far

A Well-structured 1D JAVA code that:

Solves the equations of stellar structure using finite difference discretization (hydrostatic equilibrium & Poisson

equation) + polytropic equation of state, without considering energy generation and opacity. This is helpful
since an analytical solution exists to test the code.

Is highly modular: ] TR
Integrator (Euler integrator, relaxation integrator)

Building models
Writing files
Constants

Visualizations

Can be easily modified to accommodate more complicated physics/solvers etc..



Currently underway...

Upgrading the 1D code to (r, 6)
(inr and 6)

Next:

Consider a

Adding equation with convective tfransport coefficients in 2D (Jermyn, Tout,
Chitre & Lesaffre)



Conclusions

Many astrophysical phenomena require multi-D approaches. 2DStars aims to provide such a framework.

Most model output is affected by rotation by various degrees depending on rotational velocity (tracks in the
HR diagram, lifetimes, masses, chemical composition...). Stellar evolution is thus a function of M, Z and Q.

A number of serious discrepancies between current models and observations have been noticed over the
past few years (the distribution of stars in the HR diagram at various metallicities, He and N abundances in
massive O- and B-type stars and in giants and supergiants..).

Data is available to constrain the models: The VLT-FLAMES survey of massive stars (Evans+ 2005, 2006), VLT-FLAMES
Tarantula Survey (Evans 2011) and the ongoing Gaia-ESO Survey make such comparisons possible.

2D models may provide important feedback on the accretion process during mass transfer in close binary
systems.



Supplementary material



log X

Results form other works: also show C-rich outer cores
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Abundance profiles in the 0.64 M@ CO WD remnant
produced by the 3!\/\@ model using MESA (Fields+ 2016)
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Coordinate System

» The issue arises because of centrifugal deformation: Spheroidal geometry.
» The stellar surface no longer coincides with a constant-coordinate surface.

» To avoid approximate treatment of surface boundary conditions, one can
use a surface-fitting coordinate system (&, 8, ¢) where & is specified by the
relation: r = f(&,0),& = 1 corresponding the star’s surface.

following definition for the radial coordinate ¢, which ensures a good convergence of the numerical method:

5 3 _ 3 5
(€8 = (1- 90+ 2 X (Ry(@) - 1+ 1), (29)
where € is the flatness given by Eq. (4), (r(C,0), 6, ¢) arethe spherical coordinates corresponding to the point (Z, 6, @),
and Rg(0) is the surface of the star. By setting { = 1, one obtains r(1,0) = Rs(6), and the centrer = 0 is given by
¢=0.

Lignieres, Rieutord, & Reese 2006, A&A 455, 607
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