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Science goal

The goal is to develop a general-use 2D, adaptable to 3D, stellar 

evolution code (Izzard 2015) to model a variety of multi-dimensional 

phenomena in the evolution of single and binary stars.

• Rotating Stars

• Close Binaries

• Star Formation

• X-ray Binaries



Rotating stars

A large fraction of stars rotate rapidly, are not 

spherical and exhibit surface temperature variations.

 The centrifugal force caused by rotation 
changes the hydrostatic balance, which alters 
the structure. This affects intrinsic stellar properties 
like luminosity (Potter + 2012), oscillation frequencies 
(Reese 2015) …

 Rotation introduces a brightness asymmetry due 
to the variation in the flux flowing through the 
surface as a function of latitude (von Zeipel’s
theorem: higher radiative flux at higher latitudes).

Left: Surface temperature variations and aspherical distortion in the rapidly

rotating A-type star Altair.

Right: Reconstructed image with intensities converted into the

corresponding blackbody temperatures shown as contours (Monnier+2007).

Zina Deretsky, NSF

Credit: Ming Zhao (University of Michigan) 

Altair rotates at 90% of its breakup velocity 
with a period of 9 hours (2.8 rev/day). This 
causes the equator to bulge and darken 
(cooler). Ieq = 60% Ipole.



 Rotation alters the stellar chemistry by developing internal currents (such as the meridional Eddington-Sweet 
circulation)

 It couples to magnetic fields, commonly referred to as an 𝛼 - Ω dynamo (Schmalz & Stix 1991, Potter, Chitre & Tout 2012). 

 It may affect mass-loss or cause wind anisotropies: geff effect/ 𝜅eff effect (Maeder & Meynet 2000).

Stellar evolution is a function of M, Z and Ω.

Thus, stars can only be modelled properly in multi-dimensions. 

Rotating stars cont’d



State-of-the-art

1. 1D codes simplifications:

 First models assumed solid body rotation Ω = cnst.

 Differential rotation: Ω(r) = cnst on isobars (shellular rotation).

 modelling meridional circulation: free parameters 

2. 2D codes:

 Roxburgh (2004): non-evolving uniformly-rotating models

 Li+ (2009): solar models but on short timescales

 ROTORC (Dupree 1990) : only models main-sequence stars on short timescales

 ESTER (Espinosa Lara & Rieutord 2013): predicts pulsation frequencies of main-sequence stars

3. 3D codes:

 Djehuty (Dearborn+ 2006): hydrodynamical code (ideal for rapid phenomena but not to evolve a star). 



★ We are interested in the long term evolution (nuclear/thermal time scale) i.e. that of the order of the stellar lifetime.

★ Initial setup: A single axisymmetric rotating star that evolves in time, for a given set of initial conditions.

★ Rotation and slow internal fluid rotation-driven flows including meridional circulation will be modelled consistently.

★ Magnetic fields: Initially ignored but to be included later as they enforce co-rotation and couple stellar cores to 
their envelopes. 

★ Chemistry: Fast mixing (convection, horizontal turbulence…) will be parameterized. Work on 2D MLT is currently 

underway (Jermyn, Tout, Chitre & LeSaffre).

★ Mass transfer: Material accretes through an accretion disc which should be modelled in 2D. 

Setup & input physics



Application II:

Mass Transfer in Close Binaries

Formation of an accretion disc by Roche-lobe overflow from 

the giant companion star.

It is suggested that oblate distortion of rotating WDs drive 

latitude-dependent abundance gradients that may affect 

dust formation following a nova ejection (Scott 2000) (prolate

ejecta?).

2D models may provide important feedback on the 

accretion process preceding the synthesis of C-rich dust in 

CO nova ourbursts.

Image credits:

https://trkendall.wordpress.com

S. Wiessinger/Nasa Goddard Space Flight Center



IR novae observations: C-rich dust

Credit: Max Planck Institute.

NOVA   Aql 1982

Simbad

The presence of C-rich dust in nova 

ejecta (SiC, C) has been observed 
(Gehrz+ 1993,1998, 1999, Starrfield+ 1997) and 

is established from spectroscopic 

measurements (José+ 2014).

25 classical novae from IR measurements (Gehrz+1998)



How is C-rich ejecta produced?

https://geosci.uchicago.edu/people/andrew-m.-davis

C/O

C > O

all O is locked up 
in the very stable 

CO molecule 

SiC grains
graphite 

grains

O > C

all C is locked 
up in CO

oxides silicates

Determinant

Environment

conditions

Expected 

grains

Most calculations obtain O>C

Inconsistent with the observation of C-rich dust 

reported in some novae José+ (2004).



Why is it so?

Traditionally, nova models 

assumed that the CO WD 

hosting the outburst has 

𝑿 𝟏𝟐𝑪 = 𝑿 𝟏𝟔𝑶 ~ 𝟎. 𝟓

(Salaris+ 1996)



New models: Updated CO WDs (project led by Jordi Jose)

Mean composition of the ejecta (CNO-group). 

Chemical profiles of an 8M⊙ star, after a series of thermal 
pulses, computed with the HYADES code (Halabi & El Eid 2015). 

+ Model 6:
WD material: C/O=1

25% 75% solar
from 2-D and 3-D hydro 

(Casanova+ 2010, 2011) 



Why is this finding important? 

 It explains the presence of observed C-rich nova ejecta

 It extends the possible contribution of novae to the inventory of carbonous presolar grains 
(diamonds, silicon carbides and graphites)

 C-rich ejecta in nova outbursts may also account for the origin of C-rich J-type stars (10-

15% of the observed C stars in our Galaxy and in the LMC) (Sengupta, Izzard, & Lau 2013)

 More realistic models yield more realistic results.

José, J., Halabi G. M. & El Eid, M. (2016) Accepted to A&A 

(arXiv:1606.05438)



2DSTARS: What we have so far

A Well-structured 1D JAVA code that:

1. Solves the equations of stellar structure using finite difference discretization (hydrostatic equilibrium & Poisson 

equation) + polytropic equation of state, without considering energy generation and opacity. This is helpful 

since an analytical solution exists to test the code. 

2. Is highly modular: 

3. Can be easily modified to accommodate more complicated physics/solvers etc..   

 Integrator (Euler integrator, relaxation integrator)

 Building models 

 Writing files

 Constants

 Visualizations



Currently underway…

 Upgrading the 1D code to 2D (r, θ) 

 Uniform mesh (in r and θ) 

Next:

 Consider a non-uniform mesh

 Adding energy transport equation with convective transport coefficients in 2D (Jermyn, Tout, 

Chitre & Lesaffre) 



Conclusions

 Many astrophysical phenomena require multi-D approaches. 2DStars aims to provide such a framework.

 Most model output is affected by rotation by various degrees depending on rotational velocity (tracks in the 

HR diagram, lifetimes, masses, chemical composition…). Stellar evolution is thus a function of M, Z and Ω.

 A number of serious discrepancies between current models and observations have been noticed over the 

past few years (the distribution of stars in the HR diagram at various metallicities,  He and N abundances in 

massive O- and B-type stars and in giants and supergiants..). 

 Data is available to constrain the models: The VLT–FLAMES survey of massive stars (Evans+ 2005, 2006), VLT–FLAMES 

Tarantula Survey (Evans 2011) and the ongoing Gaia-ESO Survey make such comparisons possible. 

 2D models may provide important feedback on the accretion process during mass transfer in close binary 

systems.



Supplementary material



Abundance profiles in the 0.64 M⊙ CO WD remnant 

produced by the 3M⊙model using MESA (Fields+ 2016)
6M⊙model at the end of He-burning using 

Fynbo+ (2005) rate for the 3-𝛼 and Xu+ (2013) 

rate for the 12C(𝛼,𝛾)16O reaction (Karakas & 

Lugaro 2016)

Results form other works: also show C-rich outer cores



Coordinate System 

 The issue arises because of centrifugal deformation: Spheroidal geometry. 

 The stellar surface no longer coincides with a constant-coordinate surface.

 To avoid approximate treatment of surface boundary conditions, one can 

use a surface-fitting coordinate system where  𝜉 is specified by the 

relation: 𝑟 = 𝑓 𝜉, 𝜃 , 𝜉 = 1 corresponding the star’s surface.

(𝜉, 𝜃, 𝜙)

4 D. Reese et al.: Acoust ic oscillat ions of rapidly rotat ing polyt ropic stars

This new choice of variables leads to the following set of equat ions:

λb = −N v ·∇ H − H ∇ · v, (22)

λH v = −H (∇ Π + ∇ Ψ) + ∇ H −NΠ +
b

Λ
− 2ΩH ez × v, (23)

λΠ − λ
Γ1

(N + 1)Λ
b =

Γ1

γ
− 1

v · ∇ H

Λ
, (24)

0 = ∆Ψ− H N − 1b. (25)

If Γ1 = γ then N 2
o = 0 and the above system reduces to:

λNΛΠ = −N v ·∇ H − H ∇ · v, (26)

λv = − ∇ Π − ∇ Ψ− 2Ωez × v, (27)

0 = ∆Ψ− NΛH N − 1Π. (28)

This simplificat ion occurs when the polyt ropic relat ion (1) is also the equat ion of state, a situat ion typical of white

dwarfs or neut ron stars. Furthermore, both Π and b become proport ional to the Eulerian perturbat ion of the enthalpy,

thus just ifying a poster iori the choice of these variables. As a result , apart from a few mult iplicat ive factors, and the

lack of a dissipat ive force, this second set of equat ions corresponds to those obtained by Yoshida & Eriguchi (1995).

2.4. Domains and boundary/ interface condit ions

In order to complete the eigenvalue problem given by Eqs. (22)-(25), it is necessary to specify a number of boundary

condit ions. The basic requirements are that the solut ions remain bounded at the surface and at the centre of the star,

and that the gravity potent ial goes to zero at infinity.

At the centre of the star, the regularity condit ions are classically expressed in terms of spherical harmonics (see

Eqs. (53) and (54)). By using the variables Π and b from the generalised Frobenius study, the solut ion is naturally

bounded on the star ’ssurface. However, the use of these variables leads to a degeneracy between Eqs. (22), (24) and the

radial component of Eq. (23) on the surface of the star. This problem is remedied by replacing the radial component

of Eq. (23) with its radial derivat ive on the surface.

It is also necessary to impose a boundary condit ion on the perturbat ion to the gravity potent ial Ψ, in order to

ensure that the potent ial goes to zero at infinity. Tradit ionally, this is doneby doing a harmonic decomposit ion of Ψ and

imposing the correct condit ion on each component . However, such a procedure becomes complicated on a spheroidal

surface, and it is not certain whether the decomposit ion of Ψ will converge for highly flat tened configurat ions (Hachisu

et al., 1982). We therefore employ a different method based on Bonazzola et al. (1998). It consists in adding a second

domain V2 which is bounded on the inside by the star’s surface and on the outside by a sphere of radius r = 2 (which

is twice the equatorial radius). We solve Poisson’s equat ion in this domain and impose the correct boundary condit ion

on its outer boundary (where we can safely apply a harmonic decomposit ion). On the inner boundary, it is necessary

to use interface condit ions which ensure the cont inuity of Ψ and its radial derivat ive across the stellar surface.

2.5. Spheroidal geometry

The next step in the calculat ions is the choice of a coordinatesystem based on Bonazzola et al. (1998) for each domain.

In order to preserve spectral accuracy, the system of coordinates in the first domain needs to fit the surface of the

star, and provide a non-singular t ransformat ion in the centre. As in Paper I and Rieutord et al. (2005), we choose the

following definit ion for the radial coordinate ζ, which ensures a good convergence of the numerical method:

r (ζ,θ) = (1− ε)ζ +
5ζ3 − 3ζ5

2
(Rs(θ) − 1 + ε) , (29)

where ε is the flatness given by Eq. (4), (r (ζ, θ),θ,φ) are the spherical coordinates corresponding to the point (ζ, θ,φ),

and Rs(θ) is the surface of the star. By set t ing ζ = 1, one obtains r (1, θ) = Rs(θ), and the centre r = 0 is given by

ζ = 0.

In second domain, we used the following definit ion:

r (ζ,θ) = 2ε + (1 − ε)ζ + 2ζ3 − 9ζ2 + 12ζ − 4 (Rs(θ) − 1− ε) , (30)

where ζ ∈ [1, 2]. This mapping is chosen so as to insure the cont inuity of r and r ζ across the boundary ζ = 1, and so

that the surface given by ζ = 2 corresponds to the sphere r = 2 (r ζ denotes ∂ζ r ).

Lignières, Rieutord, & Reese 2006, A&A 455, 607



Some results

 Solar polytrope: n=3

The solution relaxes after 10 iterations.

4

7

The solution r(r) for  0 ≤ r ≤ R is called a polytrope and requires two boundary

conditions. Hence a polytrope is uniquely defined by three parameters : K, n,

and R. This enables calculation of additional quantities as a function of radius,

such as pressure, mass or gravitational acceleration.

Now for the solution, it is convenient to define a dimensionless variable q in the

range 0 ≤ q ≤ 1 by

Which allows the derivation of the well-known Lane-Emden equation, of index

n (see class derivation)

8

Solving the Lane-Emden equation

It is possible to solve the equation analytically for only three values of the

polytropic index n

See Assignment

2, where you will

derive these

analytically

Solutions for all other values of n  must be solved numerically i.e. we use a
computer program to determine  q for values of x

Solutions are subject to boundary conditions:
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Solar model is taken from: 

John N. Bahcall & M. H. Pinsonneault

Phys. Rev. Lett., 92, 121301, 2004

Density profile Mass Profile

temperature profile 




