The slowly pulsating B-star 18 Peg: A testbed for upper main sequence stellar evolution

A. Desphande⁴

S. Moehler⁵

A. Irrgang¹ P. De Cat² A. Tkachenko³ M. Mugrauer⁶

C. Aerts³ D. Janousch⁷

¹Dr. Karl Remeis-Observatory Bamberg & ECAP, Sternwartstr. 7, 96049 Bamberg, Germany (e-mail: andreas.irrgang@fau.de) ²Royal Observatory of Belgium, Ringlaan 3, B-1180 Brussels, Belgium ³Instituut voor Sterrenkunde, KULeuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium ⁴ Imperial College London, Blackett Lab, Prince Consort Rd., London SW7 2AZ, United Kingdom ⁵ European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany ⁶Astrophysikalisches Institut und Universitäts-Sternwarte Jena, Schillergäßchen 2. 07745 Jena, Germany ⁷Sternwarte Dieterskirchen, Roigerstr. 6, 92542 Dieterskirchen, Germany

RIEDRICH-ALEXANDER NGEN-NÜRNBERG

NATURWISSENSCHAFTLICHE FAKULTÄT

Convective overshooting – a longstanding challenge

Slowly pulsating B (SPB) stars

- The class of SPB stars was first introduced by Waelkens (1991) and consists of mid to late B-type stars that show photometric variability on the order of a few days
- Pulsations are thought to be driven by an "opacity bump" mechanism that excites multi-periodic, non-radial gravity modes with periods in the range 0.4–3 days and V-band amplitudes lower than 0.03 mag (Catelan & Smith 2015)
- In 2007, the number of confirmed plus candidate Galactic SPB stars was only 116 (De Cat 2007)
- The terminal-age main sequence is a hard boundary for the instability strip of SPB stars owing to the very strong damping of high-order gravity modes in the interiors of post main-sequence stars (Pamyatnykh 1999)

Facts & beliefs

- ► Bright (V = 6 mag) mid B-type giant (B3 III) of relatively high Galactic latitude (l = 65.80°, b = -36.51°)
- Relatively nearby ($d = 372 \pm 25 \text{ pc}$, Nieva & Przybilla 2012)
- Slow rotator ($v \sin(i_r) = 15 \pm 3 \text{ km s}^{-1}$, Nieva & Przybilla 2012)
- Normal chemical composition (Nieva & Przybilla 2012)
- Generally assumed to be a single star
- \Rightarrow Frequently used as a reference star for various different studies.

Facts & beliefs

- ► Bright (V = 6 mag) mid B-type giant (B3 III) of relatively high Galactic latitude (l = 65.80°, b = -36.51°)
- Relatively nearby ($d = 372 \pm 25 \,\mathrm{pc}$, Nieva & Przybilla 2012)
- Slow rotator ($v \sin(i_r) = 15 \pm 3 \text{ km s}^{-1}$, Nieva & Przybilla 2012)
- Normal chemical composition (Nieva & Przybilla 2012)
- Generally assumed to be a single star
- \Rightarrow Frequently used as a reference star for various different studies.

Two new facets (Irrgang et al. 2016)

- Part of a single-lined spectroscopic binary system
- One of the most evolved slowly pulsating B stars discovered so far

Line-profile variations

The black solid, red dashed, and blue dash-dotted lines are observed Uves spectra with spectral resolutions $R = 107\,200$ taken three and two days apart (MJD 51707.23, 51710.24, and 51712.24).

Light-curve analysis

Periodograms (*top*) and phased light-curves (*bottom*) for HIPPARCOS epoch photometry (*left*, 59 points in ~ 1000 days) and ASAS (*right*, 85 points in 569 days) data.

Oscillation parameters

$$\operatorname{mag}_{j}(t) = \overline{\operatorname{mag}}_{j} + A_{j} \cos\left(2\pi \left[(t - T_{\mathrm{ref}})/P_{\mathrm{osc}} + \phi_{\mathrm{osc,ref}}\right]\right)$$

Parameter	Value	
HIPPARCOS epoch photometry data:		
Period Posc	$1.38711 \pm 0.00014 \text{days}$	
Reference epoch T_{ref} (fixed)	47 898.49 MJD	
Phase $\phi_{\rm osc, ref}$ at epoch $T_{\rm ref}$	0.58 ± 0.05	
H_p mean magnitude	$5.9626 \pm 0.0009 \mathrm{mag}$	
H_p semiamplitude	$0.0069 \pm 0.0013 \mathrm{mag}$	
ASAS light-curve:		
Period Posc	$1.39976 \pm 0.00030 \text{days}$	
Reference epoch T_{ref} (fixed)	54 229.40 MJD	
Phase $\phi_{\rm osc, ref}$ at epoch $T_{\rm ref}$	0.68 ± 0.05	
$V_{\rm A}$ mean magnitude	$5.9748 \pm 0.0016 \mathrm{mag}$	
V _A semiamplitude	$0.0120 \pm 0.0024 \mathrm{mag}$	

Spectral modeling of the line-profile variations

Schrijvers et al. (1997) provide a formulation for the surface velocity field of a rotating, adiabatically pulsating star:

- It is purely dynamical.
- The pulsational and rotational axes are aligned.
- It accounts for the effects of the Coriolis force (∝ Ω) but not for the centrifugal force (∝ Ω²).
- It considers only mono-periodic modes although multiple modes are excited simultaneously in most pulsators.

Spectral modeling of the line-profile variations

Spectral modeling of the pulsationally driven line-profile distortions for five epochs (*columns*) and one exemplary line: the observations are indicated by a black line, the model by a red one, and the quality of the fit by the residuals χ . Oscillation and rotation phases are listed on the x-axes.

 \Rightarrow Line-profile variations can be well explained by stellar pulsations

Parameters and derived quantities for the best-fitting pulsational model with l = 5 and m = 1.

Parameter	Value	Derived quantity	Value
$k^{(0)}$	$0.792^{+0.006}_{-0.007}$	$a_{ m sph}$	$0.2688^{+0.0016}_{-0.0009}R_{\odot}$
Posc	$1.3818\pm0.0001\text{days}$	$\omega^{(0)}$	$4.5429 \pm 0.0002 \mathrm{days^{-1}}$
$\phi_{ m osc, ref}$	$0.4963^{+0.0020}_{-0.0015}$	$\Omega/\omega^{(0)}$	$0.0577^{+0.0010}_{-0.0001}$
$\phi_{ m rot,ref}$	$0.5323^{+0.0018}_{-0.0020}$	η	$0.0042\substack{+0.0002\\-0.0001}$
Ω/ω	$0.0576^{+0.0010}_{-0.0001}$	М	$7.3^{+0.2}_{-0.4}M_{\odot}$
$v\sin(i_r)$	$16.07^{+0.04}_{-0.03}{\rm kms^{-1}}$	R_{\star}	$10.9^{+0.1}_{-0.2}R_{\odot}$
$\langle v_{\rm v}^2 \rangle^{1/2}$	$1.96^{+0.02}_{-0.01}\mathrm{kms^{-1}}$	$P_{\rm rot}$	$23.9801^{+0.0043}_{-0.3899}\mathrm{days}$
<i>i</i> r	$44.2^{+0.2}_{-0.3}$ °	$\log(g(\mathrm{cms^{-2}}))$	$3.22\pm0.01\text{dex}$

- η is the ratio of the centrifugal to the gravitational force at the equator
- R_{\star} is derived from the identity $v \sin(i_r) = \Omega R_{\star} \sin(i_r)$
- $M = k^{(0)} (\omega^{(0)})^2 R_{\star}^3 / G$ (see Eq. (9) in Schrijvers et al. 1997)
- The surface gravity follows from $g = GMR_{\star}^{-2}$

Potential benchmark star for upper main sequence stellar evolution models

Conclusions

18 Peg is ...

- a single-lined spectroscopic binary with an eccentric orbit of about 6 years with a main sequence or neutron star companion
- a slowly pulsating B star
 - Iow amplitude gravity mode observed in photometry and spectroscopy
 - evolved
 - \Rightarrow lower limit on the width of the upper main sequence
 - \Rightarrow information about the efficiency of convective overshooting

Follow-up observations are needed to perform a more sophisticated asteroseismic study and to fully exploit the star's potential as benchmark object:

- Spectroscopy: HERMES@1.2-m Mercator
- Photometry: BRITE? TESS?

Despite various simplifications, the model is already a function of 10 parameters¹: $\Phi = \Phi(l, m, a_{sph}, k^{(0)}, \omega^{(0)}, \Omega/\omega^{(0)}, i, v \sin(i), \phi_{osc}, \phi_{rot})$

- Angular degree: *l*
- Azimuthal order: m
- Vertical amplitude: a_{sph}
- Ratio of the horizontal and vertical amplitude: k⁽⁰⁾
- Angular oscillation frequency: $\omega^{(0)}$
- Ratio of the angular rotation frequency Ω and $\omega^{(0)}$: $\Omega/\omega^{(0)}$
- Inclination of the pulsational/rotational axis: i
- Projected rotational velocity: v sin(i)
- Oscillation phase: $\phi_{\rm osc}$
- Rotation phase: φ_{rot}

¹Superscripts ⁽⁰⁾ refer to quantities in the non-rotating case.

Wavelength shifts

Observed Uves spectra with $R \approx 55\,000$ taken about 72 days apart. Left: A clear wavelength shift is visible for the stellar SiII lines. Right: Interstellar KI and telluric lines are shown for reference.

18 Peg: A single-lined spectroscopic binary system

The measurements are represented by black symbols with error bars while the best-fitting Keplerian model is indicated by the red solid curve. Residuals χ are shown in the lower panel.

Parameter	Value
Period P	$2190^{+11}_{-10}\mathrm{days}$
Epoch of periastron $T_{\text{periastron}}$	$57600^{+50}_{-70}\mathrm{MJD}$
Eccentricity e	$0.40^{+0.08}_{-0.09}$
Longitude of periastron ω	$115^{+12}_{-17}\deg$
Velocity semiamplitude K_1	$6.3^{+0.9}_{-0.7}\mathrm{kms^{-1}}$
Systemic velocity γ	$-9.8 \pm 0.4 \mathrm{km}\mathrm{s}^{-1}$
Derived parameter	Value
Mass function $f(M)$	$0.043^{+0.016}_{-0.012} M_{\odot}$
Projected semimajor axis $a_1 \sin(i)$	$1.16^{+0.13}_{-0.11}\mathrm{AU}$
Projected periastron distance $r_{\rm p} \sin(i)$	$149^{+22}_{-20} R_{\odot}$

The nature of the companion

Mass of the secondary component as a function of the orbital inclination: a fixed primary mass of $M_1 = 5.8 M_{\odot}$ (Nieva & Przybilla 2014) is used to solve the mass function

$$f(M) \coloneqq \frac{M_2 \sin^3(i_o)}{(1 + M_1/M_2)^2} = (1 - e^2)^{3/2} \frac{K_1^3 P}{2\pi G}$$

numerically for M_2 . The width of the shaded region reflects the 1σ -uncertainties of f(M).

The nature of the companion

Spectral energy distribution. No signatures of an infrared excess/cool companion.

All constraints on the nature of the companion are indirect and not very tight:

- ▶ Mass function: $M_2 \ge 1 M_{\odot} \Rightarrow$ no substellar object
- ► Single-lined system $\Rightarrow L_2 \le 0.07 L_1 \Rightarrow M_2 \le 4 M_{\odot}$ if the companion is a main-sequence star
- No binary signatures in the spectral energy distribution

Possible candidates:

- Main-sequence star with $1 M_{\odot} \le M_2 \le 4 M_{\odot}$
- Compact object (white dwarf, neutron star, or a black hole)