On the arduous task of modelling rotating A-type stars and their pulsations

Rhita-Maria Ouazzani

Stellar Astrophysics Centre - Aarhus University

Why would anyone want to do that?!

(Modelling rotating A-type stars and their pulsations)

- Non-standard stellar physics related to convective cores and rotation:
 - transport and mixing phenomena due to rotation,
 - mixing due to overshooting,
 - baroclinic flows,
 - turbulence,
 - diffusion,

-...

- Advances in understanding these phenomena will allow to interprete observations fruitfully
- Unprecedented asteroseismic potential which results are hindered by our lack of knowledge of these phenomena

- 1. Expected rotational effects on A-type stars structure
- 2. Impact of rotation on their pulsations
- 3. Asteroseismic inferences of rotation

What rotation does to stars

 \rightarrow Transport of chemical elements (evolution !), and angular momentum

In spherical symmetry

YREC (Pinsonnault 1988, Chaboyer 1995), Geneva Evolution code (Talon et al. 1997), STAREVOL (Palacios et al. 2003), CESTAM (Marques et al. 2013)

Success e.g. Li depletion in A-F stars

(Charbonnel & Talon 1999)

In spherical symmetry

YREC (Pinsonnault 1988, Chaboyer 1995), Geneva Evolution code (Talon et al. 1997), STAREVOL (Palacios et al. 2003), CESTAM (Marques et al. 2013)

Success e.g. Li depletion in A-F stars (Charbonnel & Talon 1999)

In two dimensions (steady state)

- Evolution in spherical symmetry
- Ad hoc rotation profile
- Hydrostatic Equilibrium including centrifugal force

SCF method (Jackson et al. 2004 2005) Characteristics method (Roxburgh 2004 2006)

 \rightarrow Asteroseismic and interferrometric obs^o

Centrifugal Distortion

In two dimensions (dynamical)

The ESTER project: 2D hydro simulations (Espinosa Lara & Rieutord 2007...2013)

- So far nuclear evolution ad hoc
- Convective core (isentropic), no convective envelope M $\gtrsim 1.5\,M_{\odot}$

• Differential rotation as produced by Baroclinic torques in radiative zone (RZ)

In two dimensions (dynamical)

The ESTER project: 2D hydro simulations (Espinosa Lara & Rieutord 2007...2013)

- So far nuclear evolution ad hoc
- Convective core (isentropic), no convective envelope M $\gtrsim 1.5 M_{\odot}$
- Differential rotation as produced by Baroclinic torques in radiative zone (RZ)

 \rightarrow Fast core rotating as a cylinder, shellular rotation in the inner part of the RZ, latitudinal differential in the outer part.

- \rightarrow Improvement of gravity darkening law
- → http://ester-project.github.io/ester/
- → See talk G. Halabi

Impact of rotation on A-stars pulsations

through:

- Centrifugal force $\propto r\Omega^2$ Distorts mainly the outer envelope
- \rightarrow p-modes in δ Scuti stars
- Coriolis force $\propto \Omega \nu$ Affects the pulsation dynamics, important when $P_{rot} \sim P_{puls}$
- \rightarrow g-modes in γ Doradus stars

roAp stars

Rapidly oscillating Ap stars → Talks by J. Matthews, D. Gough, M. Cunha, H. Saio and P. Quitral-Manosalva

Ouazzani et al. 2015

Effect of fast rotation on δ Scuti's pulsations

- Through a 2-dimensional, non-perturbative treatment Reese et al 2006, 2009b, Ouazzani et al. 2012b, 2015
- Account for the full influence of the Coriolis force: $\frac{\partial \mathbf{v}'}{\partial t} + (\mathbf{v_0} \cdot \nabla) \mathbf{v}' + 2\Omega \times \mathbf{v}' + (\mathbf{v}' \cdot \nabla) \mathbf{v_0} = -\frac{1}{\rho_0} \nabla p' - \nabla \Phi' + \frac{\rho'}{\rho_0^2} p_0$

Non-separability of the equations system in terms of r and (θ, φ)

→ Expansion on spherical harmonics series

$$\xi_r = \sum_{\ell \ge |m|}^{\infty} \widetilde{\xi}_{r,n,\ell}(r) Y_{\ell}^{m}(\theta,\varphi) e^{i\sigma t}$$

 \rightarrow Resolution of the 2D eigenvalue problem

Codes: TOP (Reese et al. 2006) and ACOR (Ouazzani et al. 2012b)

Through Ray dynamics formalism

Lignieres & Georgeot 2008, 2009, Pasek et al. 2012, Prat et al. 2016

Acoustic modes in δ Scuti stars: behaviour with increasing rotation ex: • Model: 2D polytropic (N=3) • Pulsations: 2D non-perturbative

Rotation: $v_{rot} = 0 \text{ km/s}$

kinetic energy in a meriodional plane

Spherical symmetry

triplet in the frequency domain

• Degeneracy of the frequencies

Acoustic modes in δ Scuti stars: behaviour with increasing rotation ex: • Model: 2D polytropic (N=3) • Pulsations: 2D non-perturbative

Rotation: $v_{rot} = 15 \text{ km/s}$

Acoustic modes in δ Scuti stars: behaviour with increasing rotation ex: • Model: 2D polytropic (N=3) • Pulsations: 2D non-perturbative

Rotation: $v_{rot} = 52 \text{ km/s}$

2nd order perturbative methods (Gough&Thompson 1990, Dziembowski&Goode 1992, Suarez&Goupil 2008)

To what extent are the perturbative methods valid?

⇒ Asteroseismology based on non-perturbative modelling of pulsations

Acoustic modes in δ Scuti stars: behaviour with increasing rotation

Rotation: $v_{rot} = 142 \text{ km/s}$

kinetic energy in a meriodional plane

0 0.2 0.4 0.6 0.8 1

• Mixed symmetry $\ell = 1/\ell = 3$

triplet in the frequency domain

• Assymmetry of the triplets

Acoustic modes in δ Scuti stars: behaviour with increasing rotation

Rotation: $v_{rot} = 233 \text{ km/s}$

triplet in the frequency domain

• No triplets

Acoustic modes in δ Scuti stars: new geometry and frequency spectrum

→ Lignières & Georgeot 2008 Ray dynamics: $\Delta_{\tilde{n}} = \pi / \left(\int_{a}^{b} \frac{ds}{c_{s}} \right)$, with s being the location on the ray path.

Acoustic modes in δ Scuti stars: a forest of modes!

Exploration of the seismic spectrum: $\eta = 0 \rightarrow \text{even}, \ \eta = 1 \rightarrow \text{odd}$ $2 M_{\odot}$, $2.4 R_{\odot}$ fully distorted model 800 evolved until $X_c = 0.35$ even odd Rotation velocity: $\Omega = 80\% \Omega_k$ 700 Roxburgh 2006 frequency (µHz) 600 500 400 300 $\tilde{I} = 0$ $\tilde{I} = 2$ Í = 1 8 10 12 14 16 18 20 2 6 frequency modulo Δv (μ Hz) 700 300 400 500 600 Frequency (µHz) $\Delta_{\widetilde{n}}$ being compatible with $\pi / \left(\int_{a}^{b} \frac{ds}{c_{a}} \right)$ Ouazzani et al. 2015 confirms ray dynamics prediction Lignieres & Georgeot 2008

Acoustic modes in δ Scuti stars: Observations

• Can island modes regularity be detected in Observations?

- Fourier transform of the frequencies with the highest amplitudes in CoRoT targets Garcia-Hernandez et al. 2009, 2013b, with *Kepler* Garcia-Hernandez et al. 2013a.

- Automatic search for constant spacing within a tolerance interval in CoRoT EXO fields Paparo et al. 2016 a,b. \rightarrow see Poster #7

- Filtered Autocorrelation adapted from the red giants Mosser&Appourchaux 2009 in 1900 δ Scuti stars of CoRoT EXO fields (Michel et al. in prep).

• Is the spacing related to a structural quantity?

- Independent determination of mass and radius from binarity + Roche Model or interferrometry ${\sf Garcia-Hernandez}$ et al. 2015

- \Rightarrow mean density for 7 δ Scuti stars with seismology (MOST, CoRoT or Kepler)
- \rightarrow see also Juan Carlos Suarez's talk

gravity modes \rightarrow equally spaced in period \Rightarrow **Period spacing** Δ **P**

- \star Properties of convective cores
- Mean value and shape \Rightarrow evolution

gravity modes \rightarrow equally spaced in period \Rightarrow **Period spacing** Δ **P**

- ★ Properties of convective cores
- Mean value and shape \Rightarrow evolution
- Shape \Rightarrow mixing above the core

gravity modes \rightarrow equally spaced in period \Rightarrow **Period spacing** Δ **P**

- ★ Properties of convective cores
- Mean value and shape \Rightarrow evolution
- Shape \Rightarrow mixing above the core
- Pattern \Rightarrow location of the discontinuity

Th: Miglio et al 2008 Obs: Saio et al. 2015, Murphy et al. 2016

gravity modes \rightarrow equally spaced in period \Rightarrow **Period spacing** Δ **P**

★ Effect of internal rotation ?

- Global linear trend on the $\Delta \textbf{P} \Rightarrow$ slope
- Little effect on the excitation range
- ~ 25-40 radial orders maximum

Th: Bouabid et al. 2013 Obs: Bedding et al. 2015, Van Reeth et al. 201

gravity modes \rightarrow equally spaced in period \Rightarrow **Period spacing** Δ **P**

- ★ Effect of internal rotation ?
- Global linear trend on the $\Delta P \Rightarrow$ slope
- Little effect on the excitation range
- ~ 25-40 radial orders maximum

Th: Bouabid et al. 2013 Obs: Bedding et al. 2015, Van Reeth et al. 2015

Asteroseismology of fast rotating γ Dors with Kepler

Kepler: the game changer !Van Reeth et al. 2015, 2016Detection of dozens of period spacing ridges in γ Doradus stars.

Asteroseismology of fast rotating γ Dors with Kepler

Kepler: the game changer ! Van Reeth et al. 2015, 2016 Detection of dozens of period spacing ridges in γDoradus stars.

Asteroseismology of fast rotating γ Dors with Kepler

Kepler: the game changer !Van Reeth et al. 2015, 2016Detection of dozens of period spacing ridges in γ Doradus stars.

Modelling γ Dor gravito-inertial modes

- \rightarrow Coriolis force dominates, centrifugal distortion negligible (Ballot et al. 2010)
- \rightarrow 1D structure + Non-perturbative modelling of pulsations.
 - * Traditional approximation of Rotation (TAR) Lee & Saio 1987a

Hypotheses:

- Solid body rotation, Spherical symmetry, Cowling approximation,
- Neglects horizontal component of the angular velocity vector

Pulsations Equations separable:

in terms of a radial part + the Hough functions $\ell(\ell+1) \rightarrow \lambda$

Modelling γ Dor gravito-inertial modes

- \rightarrow Coriolis force dominates, centrifugal distortion negligible (Ballot et al. 2010)
- \rightarrow 1D structure + Non-perturbative modelling of pulsations.
 - * Traditional approximation of Rotation (TAR) Lee & Saio 1987a

Hypotheses:

- Solid body rotation, Spherical symmetry, Cowling approximation,
- Neglects horizontal component of the angular velocity vector

Pulsations Equations separable:

in terms of a radial part + the Hough functions $\ell(\ell+1) \rightarrow \lambda$

* Asymptotic relation including the TAR Townsend 2003b

Hypotheses: • All of the above • $n >> \ell \rightarrow JWKB$ analysis

$$P_{co}(n) = \frac{2\pi^2(n+\frac{1}{2})}{\sqrt{\lambda_{\ell,m,s}(n)} \int_{r_0}^{r_1} \frac{N}{r} dr}$$

Modelling γ Dor gravito-inertial modes

- \rightarrow Coriolis force dominates, centrifugal distortion negligible (Ballot et al. 2010)
- \rightarrow 1D structure + Non-perturbative modelling of pulsations.
 - * Traditional approximation of Rotation (TAR) Lee & Saio 1987a

Hypotheses:

- Solid body rotation, Spherical symmetry, Cowling approximation,
- Neglects horizontal component of the angular velocity vector

Pulsations Equations separable:

in terms of a radial part + the Hough functions $\ell(\ell+1) \rightarrow \lambda$

* Asymptotic relation including the TAR Townsend 2003b

Hypotheses: • All of the above • $n >> \ell \rightarrow JWKB$ analysis

$$P_{co}(n) = \frac{2\pi^2(n+\frac{1}{2})}{\sqrt{\lambda_{\ell,m,s}(n)} \int_{r_0}^{r_1} \frac{N}{r} dr}$$

* Non-perturbative computations Lignieres et al. 2006, Reese et al. 2006, Ballot et al. 2010, Ouazzani et al. 2012b, 2015

A New asteroseismic diagnostic for rotation in γ Dors

Theoretical exploration of period spacing behaviour up to fast rotation Based on Non-perturbative modelling of pulsations Ouazzani et al. sub.

A New asteroseismic diagnostic for rotation in γ Dors

Theoretical exploration of period spacing behaviour up to fast rotation Based on Non-perturbative modelling of pulsations Ouazzani et al. sub.

- $\boldsymbol{\Sigma}$ does not depend on:
- Centrifugal distorsion
- Metallicity
- Type of mixing above the CC

A New asteroseismic diagnostic for rotation in γ Dors

Theoretical exploration of period spacing behaviour up to fast rotation Based on Non-perturbative modelling of pulsations Ouazzani et al. sub

Rotation of γ Dors in the stellar evolution context

Asteroseismology of rapidly rotating A-stars: We're getting there !

- Perturbative methods not valid, non-perturbative methods still not optimized for seismic modelling...
- This will be possible thanks to seismic diagnostics based on non-perturbative modelling.

δ Scuti stars

- The problem of mode ID remains for the more moderate pulsators,
- For very fast rotating stars, new organization of the frequency spectra.
 ⇒ Asteroseismology based on Island modes regularities.

γ Doradus stars

- We now can use a new seismic diagnostic to infer internal rotation
- $\rightarrow\,$ Diagnostic on the transport of angular momentum from MS to RGB