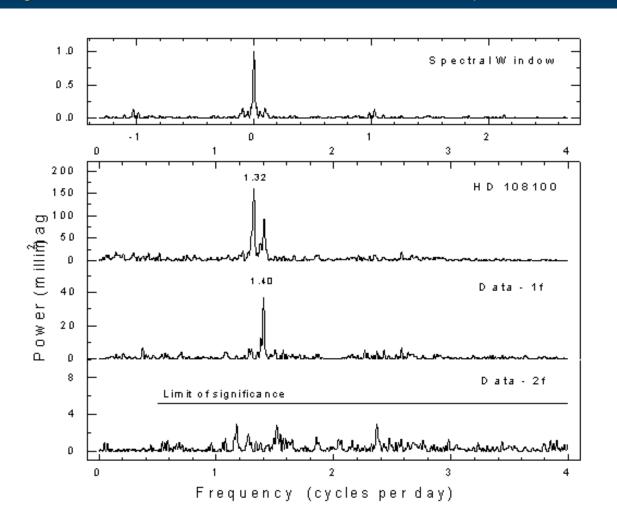
UNDERSTANDING THE ROLES OF ROTATION, PULSATION AND CHEMICAL PECULIARITIES IN THE UPPER MAIN SEQUENCE

11th - 16th September 2016, Lake District, UK

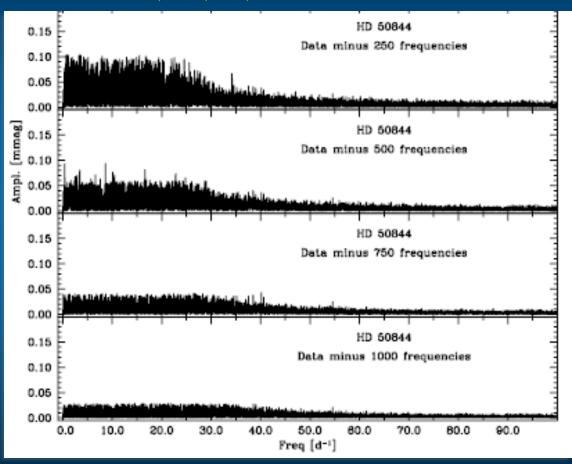
UNBIASED ESTIMATION OF A MULTIFREQUENCY SOLUTION IN DELTA SCUTI STARS

Javier Pascual Granado, **Juan Carlos Suárez Yanes**, Rafael Garrido Haba, and José Ramón Rodón

STANDARD ANALYSIS PROCEDURE IN ASTEROSEISMOLOGY


- Pre-processing: removal of systematics, outliers, de-trending, etc.
- Pre-whitening cascade CLEAN method, SigSpec, etc.
- Filtering harmonics, combinations and/or spurious frequencies.
- Characterization of the spectrum: Δv , v_{max} , σ
- Model fitting

PRE-WHITENING


PRE-WHITENING

Breger, M., Handler, G., Garrido, R., et al. 1996, DSN, 10, p.24

HD 50844: an interpretation challenge

Poretti et al. 2009, A&A, 506, 85-93

- More than a thousands of frequencies detected.
- The residuals of the prewhitening sequence are not white noise (plateau)

Also HD 50870, HD49434,

AIMS

Impact of pre-whitening on frequency detection

➤ Gapped data

➤ ARMA interpolation: preserving the original frequency content

Pascual-Granado, J., Garrido, R., and Suárez, J. C. 2015, A&A, 575, A78

Linear interpolation: non-preserving the original frequency content

CoRoT seismofield data. Why CoRoT?

CoRoT seismofield observations have ~twice the cadence of Kepler SC

Advantages of higher cadence data:

- increased sampling rate
- higher Nyquist frequency
- fewer low-frequency artefacts
- reduced errors on frequency, amplitude and phase determinations in the Fourier spectrum

Run	HD	ID	Star	SpT	mv	$\log T_{\rm eff}$	V	$v \sin i$
IRa01	50844	123	A/F D Scu	A2	9.1	3,88	1,31	64
SRc01	174936	7613	A/F D Scu	A2	8.58	3,9	1,88	170
SRc01	174966	7528	A/F D Scu	A3	7.72	3,88	1,95	125
LRc01	181555	8669	A/F D Scu	A5 V	7.52	3,85	2,19	200
LRa01	49434	100	G Dor	F1 V	5.75	3,86	2,74	-
LRc02	172189	8170	A/F D Scu	A2	8.73	3,89	1	_
SRc02	174532	7655	A/F D Scu	A2	6.90	3,86	1,38	-
SRc02	174589	7663	A/F D Scu	F2 III	6.09	3,85	1,45	100
LRa02	51722	1022	A/F D Scu	A5	7.53	3,86	1,13	127
LRa02	51359	1320	A/F D Scu	A5	8.50	3,9	0,89	_
LRa02	50870	546	A/F D Scu	F ₀	8.88	3,88	1,67	17
LRc0506	170699	8301	A/F D Scu	A2	6,95	3,88	1,49	-
IRLRa04 C	GSC00144-03031	21960	A/F D Scu	A8	10,1	_	-	-
IRLRa05	41641	5685	A/F D Scu	A5	7,9	3,882	1,92	28
SRa05	48784	3619	A/F D Scu	F0	6,66	3,84	1,87	108
			1971				15.0	

Run	HD	ID	Star	SpT	******	$\log T_{\rm eff}$	V	$v \sin i$
Run	HD	ш	Star	Spi	mv	log I eff	V	USIII t
IRa01	50844	123	A/F D Scı	A2	9.1	3,88	1,31	64
SRc01	174936	7613	A/F D Scu	1 A2	8.58	3,9	1,88	170
SRc01	174966	7528	A/F D Scu	A3	7.72	3,88	1,95	125
LRc01	181555	8669	A/F D Scu	1 A5 V	7.52	3,85	2,19	200
LRa01	49434 Gd	Or .	G Dor	F1 V	5.75	3,86	2,74	-
LRc02	172189	O I	A/F D Scu	1 A2	8.73	3,89	1	_
SRc02	174532	7655	A/F D Scu	1 A2	6.90	3,86	1,38	-
SRc02	174589	7663	A/F D Scu	F2 III	6.09	3,85	1,45	100
LRa02	51722	1022	A/F D Scu	1 A5	7.53	3,86	1,13	127
LRa02	51359	1320	A/F D Scu	1 A5	8.50	3,9	0,89	_
LRa02	50870	546	A/F D Scu	F0	8.88	3,88	1,67	17
LRc0506	170699	8301	A/F D Scu	1 A2	6,95	3,88	1,49	-
IRLRa04	GSC00144-03031	21960	A/F D Scu	1 A8	10,1	_	_	_
IRLRa05	41641	5685	A/F D Scu	1 A5	7,9	3,882	1,92	28
SRa05	48784	3619	A/F D Scu	1 F0	6,66	3,84	1,87	108

D	Ш	Ш	Ct	C.T		1T	V	
Run	HD	ID	Star	SpT	mv	$\log T_{\rm eff}$	V	$v \sin i$
IRa01	50844	123	A/F D Scu	A2	9.1	3,88	1,31	64
SRc01	174936	7613	A/F D Scu	A2	8.58	3,9	1,88	170
SRc01	174966	7528	A/F D Scu	A3	7.72	3,88	1,95	125
LRc01	181555	8669	A/F D Scu	A5 V	7.52	3,85	2,19	200
LRa01	49434	100	G Dor	F1 V	5.75	3,86	2,74	-
LRc02	172189	Binari	ty F D Scu	A2	8.73	3,89	1	_
SRc02	174532		A/F D Scu				1,38	-
SRc02	174589	7663	A/F D Scu	F2 III	6.09	3,85	1,45	100
LRa02	51722	1022	A/F D Scu	A5	7.53	3,86	1,13	127
LRa02	51359	1320	A/F D Scu	A5	8.50	3,9	0,89	_
LRa02	50870	546	A/F D Scu	FO	8.88	3,88	1,67	17
LRc0506	170699	8301	A/F D Scu	A2	6,95	3,88	1,49	-
IRLRa04	GSC00144-03031	21960	A/F D Scu	A8	10,1	_	-	_
IRLRa05	41641	5685	A/F D Scu	A5	7,9	3,882	1,92	28
SRa05	48784	3619	A/F D Scu	F0	6,66	3,84	1,87	108

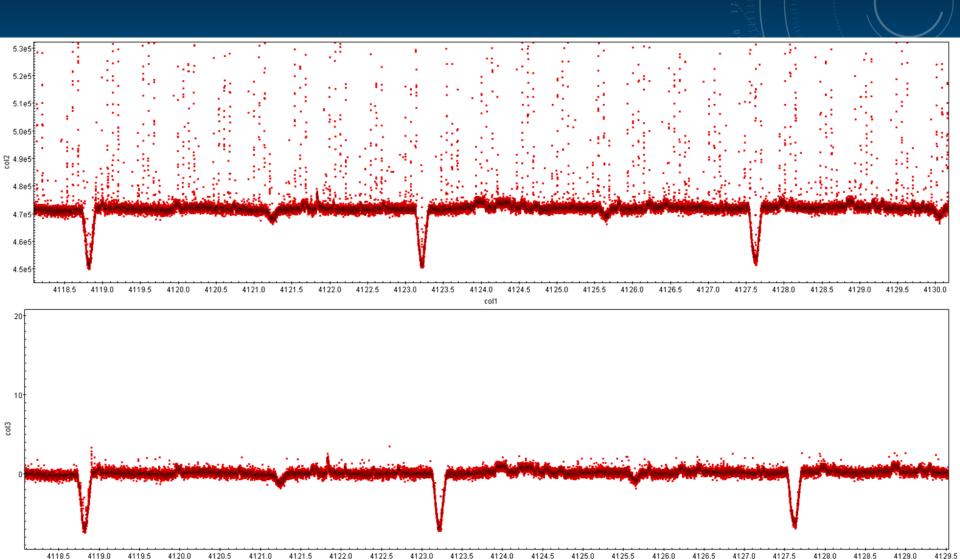
Run	$^{\mathrm{HD}}$	ID	Star	SpT	$\mathbf{m}\mathbf{v}$	$\log T_{\rm eff}$	V	$v \sin i$
IRa01	50844	123	$\mathrm{A/F}$ D Scu	A2	9.1	3,88	1,31	64
SRc01	174936	7613	A/F D Scu	A2	8.58	3,9	1,88	170
SRc01	174966	7528	A/F D Scu	A3	7.72	3,88	1,95	125
LRc01	181555	8669	A/F D Scu	A5 V	7.52	3,85	2,19	200
LRa01	49434	100	G Dor	F1 V	5.75	3,86	2,74	-
LRc02	172189	8170	A/F D Scu	A2	8.73	3,89	1	_
SRc02	174532	7655	A/F D Scu	A2	6.90	3,86	1,38	-
SRc02	174589	7663	A/F D Scu	F2 III	6.09	3,85	1,45	100
LRa02	51722	1022	A/F D Scu	A5	7.53	3,86	1,13	127
LRa02	51359	1320	A/F D Scu	A5	8.50	3,9	0,89	_
LRa02	50870	546	A/F D Scu	FO	8.88	3,88	1,67	17
LRc0506	170699	2901	A /E D Scu	A2	6,95	3,88	1,49	-
IRLRa04 G	SC00144-03031	L: HA	DS Scu	A8	10,1	_	_	-
IRLRa05	41641	5685	A/F D Scu	A5	7,9	3,882	1,92	28
SRa05	48784	3619	A/F D Scu	F0	6,66	3,84	1,87	108

Run	$^{\mathrm{HD}}$	ID	Star	SpT	$\mathbf{m}\mathbf{v}$	$\log T_{\rm eff}$	V	$v \sin i$
						_		
IRa01	50844	123	$\mathrm{A/F}$ D Scu	A2	9.1	8	1,31	64
SRc01	174936	7613	A/F D Scu	A2	8.58		1,88	170
SRc01	174966	7528	A/F D Scu	A3	7.7		1,95	125
LRc01	181555	8669	A/F D Scu	A5 V			19	200
LRa01	49434	100	G Dor	F1 V	7.4		4	-
LRc02	172189	8170	A/F D Scu	A ^c	1		4	-
SRc02	174532	7655	A/F D Scu		30	'		-
SRc02	174589	7663	A/F D Scu					90
LRa02	51722	1022	A/F D Scu	W	ORK I	N PRO	GRES	5
LRa02	51359	1320	A/F D Scu	Ao	0.00	3,5	0,05	
LRa02	50870	546	A/F D Scu	F0	8.88	3,88	1,67	17
LRc0506	170699	8301	A/F D Scu	A2	6,95	3,88	1,49	-
IRLRa04 (GSC00144-03031	21960	A/F D Scu	A8	10,1	_	_	-
IRLRa05	41641	5685	A/F D Scu	A5	7,9	3,882	1,92	28
SRa05	48784	3619	A/F D Scu	F0	6,66	3,84	1,87	108

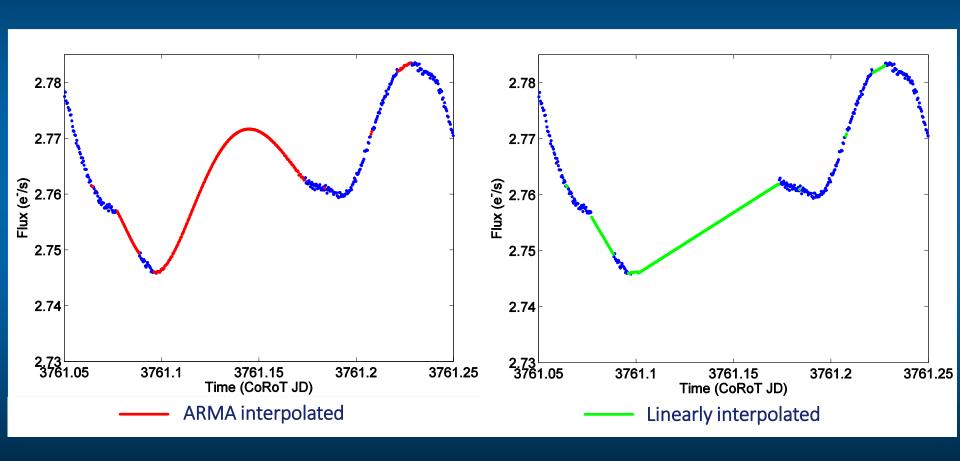
AIMS

Study of the impact of pre-whitening techniques used for frequency detection on asteroseismology

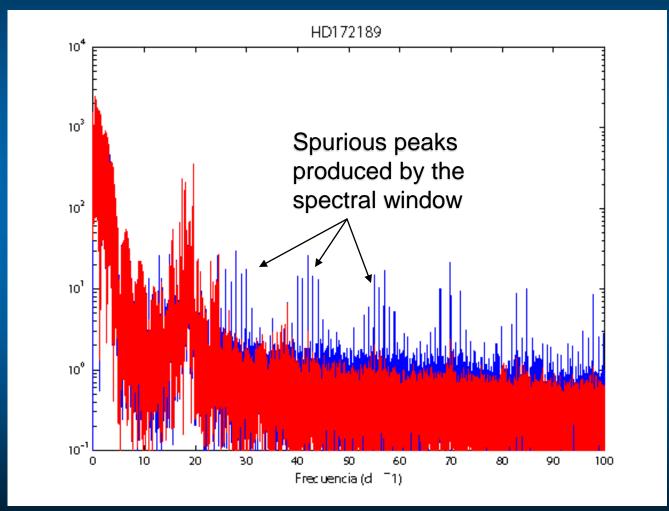
Three datasets are used:


Gapped data

ARMA interpolation: preserving the original frequency content


Pascual-Granado, J., Garrido, R., and Suárez, J. C. 2015, A&A, 575, A78

Linear interpolation: non-preserving the original frequency content


Wrong data produced by the South Atlantic Anomaly

INTERPOLATION: HD170699

CoRoT passing through the SAA introduce spurious peaks

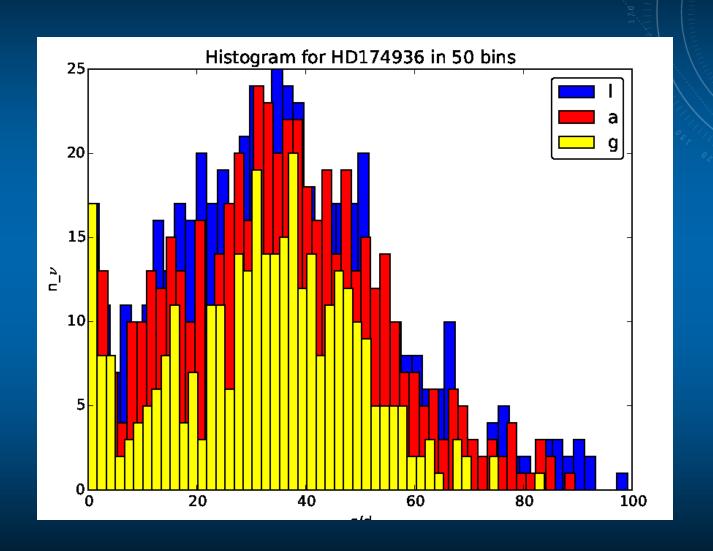
FREQUENCY DETECTION: SIGSPEC

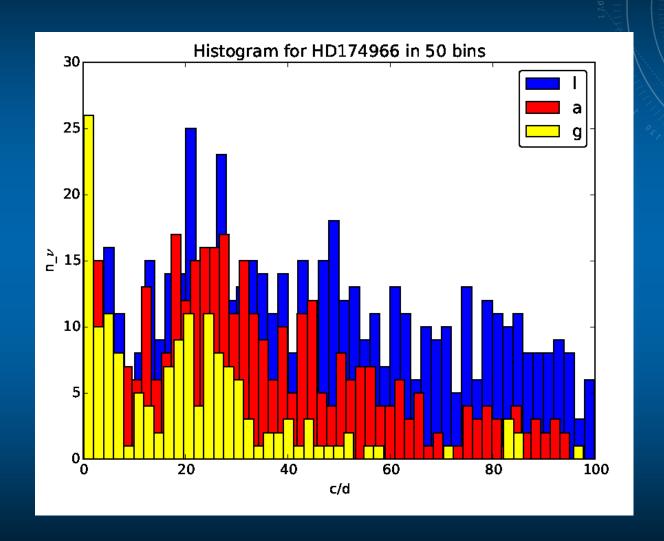
Reegen, P. 2007, A&A, 467, pp.1353-1371

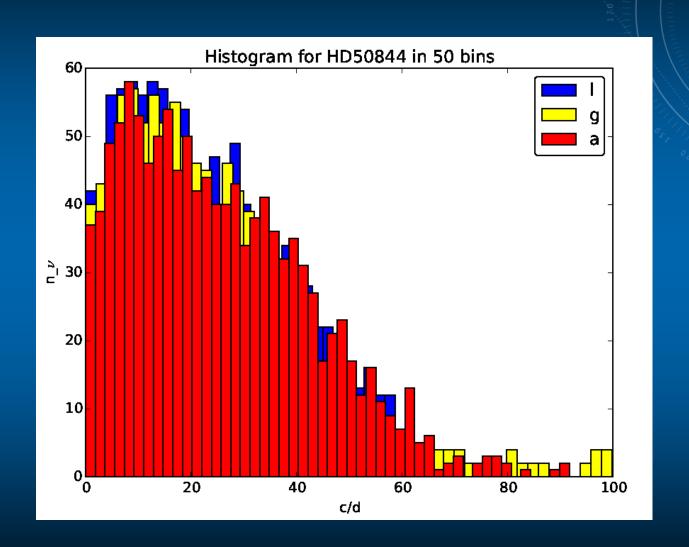
Iterative process consisting of four steps:

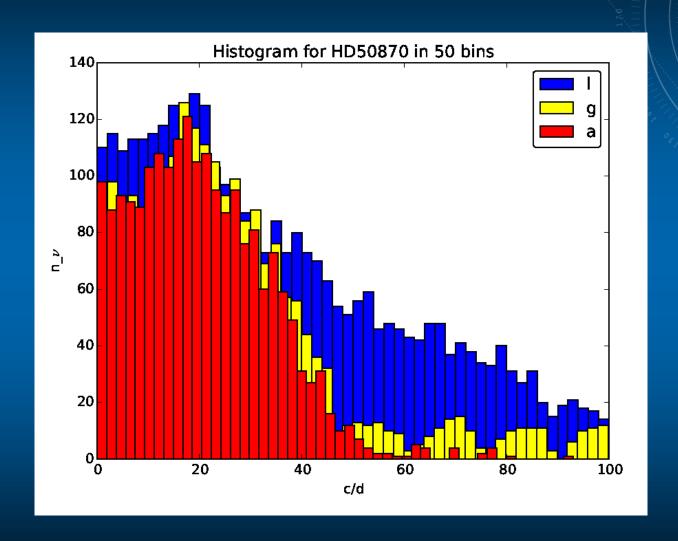
- 1 Computation of the significance spectrum.
- 2 Exact determination of the peak with maximum significance.
- 3. MultiSine least-squares fit of the frequencies, amplitudes and phases of all significant signal components detected so far.
- 4. Pre-whitening of the sinusoidal components. The residuals are used as input for the next iteration.

COMBINATIONS FILTERING

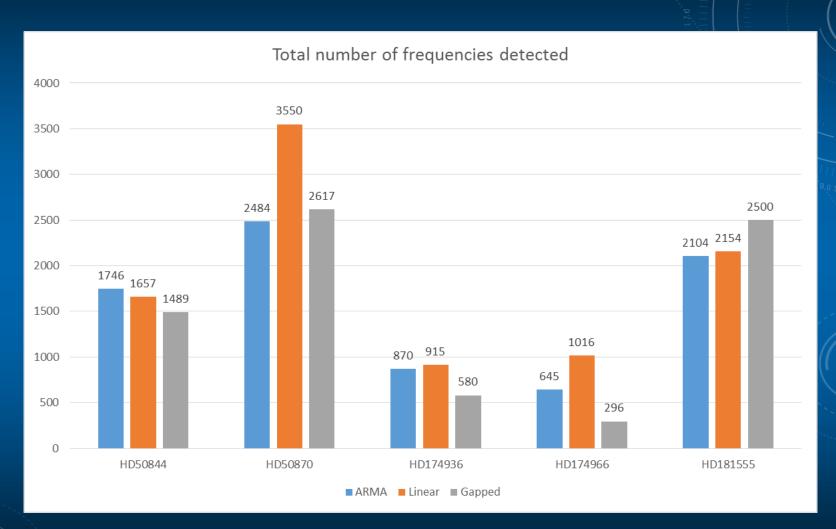

The procedure followed is similar to

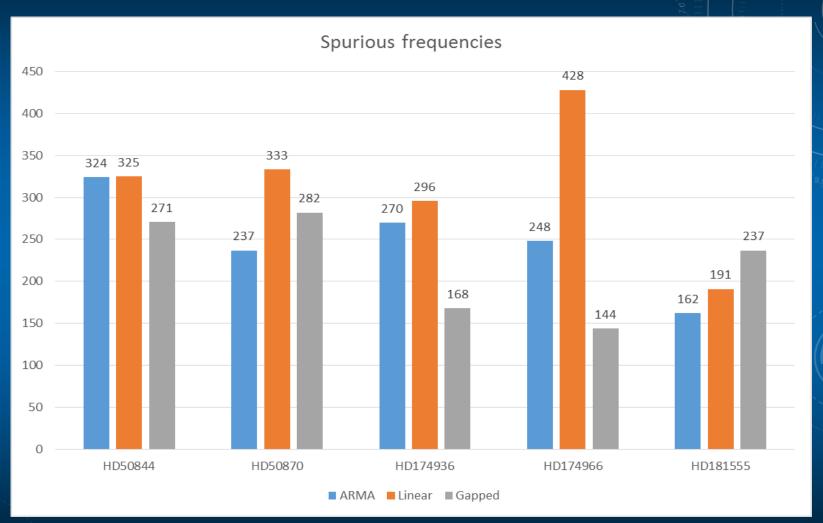

García Hernández, A., Moya, A., Michel, E. et al. 2013, A&A, A63, 14

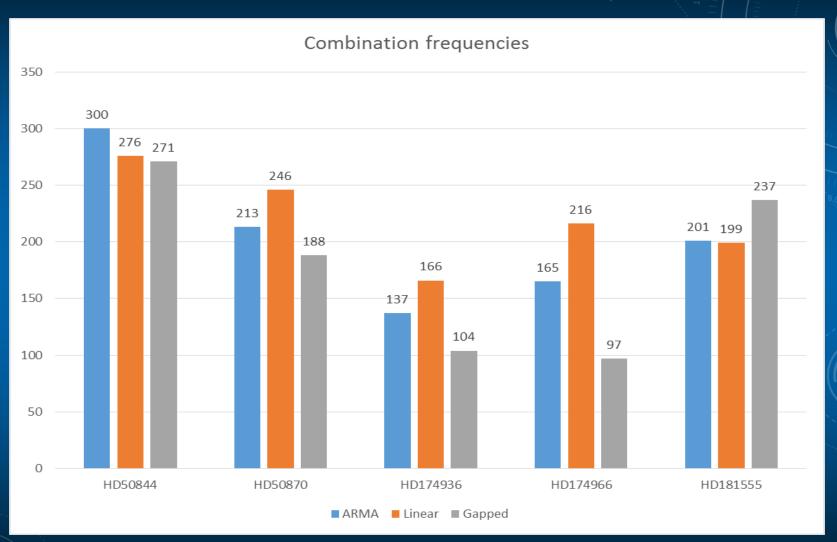

• Independent freqs. used to find combinations with Combine from Reegen, P.


Reegen, P., 2011, CoAst, 163, p.119


- Harmonics and combinations up to 3rd order within a 1/Tobs interval.
- A set of 12 independent freqs. Is used, harmonics until the 5th order, and combinations $AF_a + BF_b$ being A, B = [1,3].
- Interactions with the satellite orbital freq. ($f_s = 13.972 \, d^{-1}$) for F1 to F4 and the 4 first harmonics of f_s .
- Sidelobes of the 1 d⁻¹ alias around f_s and its harmonics.







IN SUMMARY

Expectations from prewhitening

This is what actually happens

CONCLUSIONS

Prewhitening techniques (CLEAN) are not always reliable.

 An unbiased estimator of the frequency spectrum is not guaranteed when classical prewhitening techniques are used.

More info on this:

Limits in the application of harmonic analysis to pulsating stars Pascual-Granado, J., Garrido, R., Suárez, J. C., 2015, A&A, 581, A89