

Science with nano-satellites: BRITE-Constellation

Andrzej Pigulski

Astronomical Institute University of Wrocław, Poland

Understanding the roles of rotation, pulsation and chemical peculiarities in the upper main sequence, Lake District, Cumbria, UK, 13 September 2016

Bright star photometry with nano-satellites

Why bright stars?

- Photometry is difficult from the ground.
- Easy or existing (time-series) spectroscopy.
- Visual + SB2 orbits for binaries -> masses.
- Accurate parallaxes.
- Low extinction & reddening.

Why nano-satellites?

- Small telescope = small satellite.
- Low-cost.
- Testing new techniques.

BRITE

BRIght Target Explorer

nanosatellite size: 20 × 20 × 20 cm mass: 7 kg telescope diameter: 3 cm launched: 2013-2014 Scientific goal: variability of bright (luminous) stars

Slavek Rucinski

Austria

BRITE-Constellation

6 satellites, 3 equipped with red (R), 3 with blue (B) filter

Poland

BRITE sky ≈ naked-eye sky

Pulsating stars in the H-R diagram

BRITE targets: Stars:

- bright,
- massive,
- young.

β Cephei SPB

BRITE-Constellation		Launch date	In space for
	BRITE-Austria (BAb)	25.02.2013	43 months
	UniBRITE (UBr)	25.02.2013	43 months
	<mark>Lem (BLb)</mark>	21.11.2013	34 months
	Heweliusz (BHr)	19.08.2014	25 months
*	BRITE Montréal (BMb)	19.06.2014	27 months
	BRITE-Toronto (BTr)	19.06.2014	27 months
		~	

Field of view

Orion field

BRITE photometry

- rasters,
- defocusing,
- aperture photometry.

Images courtesy Rainer Kuschnig & Adam Popowicz

Rasters/windows, modes of observing

Popowicz et al. (2016)

Removing instrumental effects: an example

Cen: HD 128898, BAb, 4 (α Cir)

Removing instrumental effect: an example

Summary of up-to-date observations

Summary of the up-to-date observations

Observations obtained for 14 fields (**337** stars). Data delivered for 13 fields (**300** stars). This includes 70% of all OB stars brighter than V = 4 mag. Ongoing observations of 3 next fields.

The associated spectropolarimetric survey (~500 stars, C.Neiner)

Two technical papers published.

The first three scientific papers published.

Two papers submitted.

Next 20 – 25 papers at different stages of preparation.

BRITE-Constellation Web page: http://www.univie.ac.at/brite-constellation/ BRITE-Constellation Wiki page: http://brite.craq-astro.ca/doku.php?id=start BRITE-Constellation Facebook page:

https://www.facebook.com/briteconstellation

Summary of the up-to-date BRITE targets

α Circini (HD 128898, A7 Vp SrCrEu, V = 3.19)

Ap STAR α Cir

Kurtz et al. (1981)

α Circini from WIRE

Asteroseismic analysis of the roAp star α Circini: 84 d of high-precision photometry from the *WIRE* satellite*

H. Bruntt,¹[†] D. W. Kurtz,² M. S. Cunha,³ I. M. Brandão,^{3,4} G. Handler,⁵ T. R. Bedding,¹ T. Medupe,^{6,7} D. L. Buzasi,⁸ D. Mashigo,⁶ I. Zhang⁶ and F. van Wyk⁷

α Circini from BRITE: pulsations

β Centauri (HD 122451 = Agena, B1 V + B + ..., V = 0.6)

β Centauri: A-B system

Table 2. Other parmeters of β Cen.

Parameter	Value	
Primary's mass, M_1	$12.02 \pm 0.13 \ M_{\odot}$]
Secondary's mass, M_2	$10.58 \pm 0.18 \ M_{\odot}$	
Semimajor axis, a	2.782 ± 0.011 AU	
Distance, D	$110.6 \pm 0.5 \text{ pc}$	
Parallax, π	9.04 ± 0.04 mas	8.
Primary's absolute magnitude, $M_{V,1}$	-4.03 ± 0.10 mag	
Secondary's absolute magnitude, $M_{V,1}$	-3.88 ± 0.10 mag	(V

8.32 ± 0.50

(van Leeuwen 2007)

e =
$$0.6 - 0.8$$

P_{orb} = $125 - 220$ lat
 $\omega = 150 - 240^{\circ}$
T₀ = $2024 - 2032$
 $\Omega = 67 - 110^{\circ}$
i = $118 - 130^{\circ}$

β Centauri: two massive components

V_{rot} sin i: Aa: 200 - 250 km/s Ab: 70 - 120 km/s

Ground-based observations:

 f_2 , f_3 or their aliases (spectroscopy) nothing reliable from photometry

β Centauri: BRITE, frequency spectrum

8 g modes 9 p modes 2 combinations

another β Cep/SPB hybrid

Pigulski et al. (2016)

β Centauri: BRITE, frequency spectra

A unifying explanation of complex frequency spectra of γ Dor, SPB and Be stars: combination frequencies and highly non-sinusoidal light curves

Donald W. Kurtz¹, Hiromoto Shibahashi², Simon J. Murphy^{3,4}, Timothy R. Bedding^{3,4}, Dominic M. Bowman¹

β Centauri: BRITE, frequency spectra

An algorithm for significantly reducing the time necessary to compute a Discrete Fourier Transform periodogram of unequally spaced data

D. W. Kurtz Department of Astronomy, University of Cape Town, Rondebosch 7700, South Africa

β Lupi (HD 132058, B2 IV, V = 2.7)

15 *g* modes

Cugier et al. (in prep.)

η Centauri (HD 127973, B1.5 Vne, V = 2.3)

long-term variability, P ≈ 29.4 d

Baade et al. (2016)

η Centauri (HD 127973, B1.5 Vne, V = 2.31)

Štefl frequency, $f_{\rm S} \approx 1.556 \, \rm d^{-1}$

Baade et al. (2016)

η Centauri (HD 127973, B1.5 Vne, V = 2.31)

δ Pictoris (HD 42933, B0 III)

BRITE data (Heweliusz)

 $P_{orb} = 1.67254 d$

δ Pictoris (HD 42933, BO III)

δ Pictoris (HD 42933, BO III)

Pulsations originate in the primary star !

2nd BRITE-Constellation Science Conference "Small Satellites – Big Science"

Innsbruck, 22-25 August 2016

Conclusions

1. BRITE data are as good as expected.

Periodic variability with amplitudes down to 0.2 – 0.3 mmag can be detected. This proves that nano-satellites can be used for science.

- BRITEs will allow asteroseismology of a large sample of Beta Cep/SPB stars with a significant number of modes (10 – 20).
- 3. Beta Cep/SPB hybridity seems to be widespread.
- Observations of a large sample of Be stars may bring a breakthrough in understanding the role of pulsations in transferring matter to circumstellar disk.
- 5. Precise masses and radii of many massive stars will be determined.

Thank you, Don, for your excellent work and for inspiring many colleagues with new ideas.

Have a lot of fun continuing work on stars...

With best greetings from (non-rapidly oscillating) AP