Magnetic Field Mapping of Chemically Peculiar Stars

James Silvester Uppsala University, Sweden

Stars 2016, Lake District, UK

UPPSALA UNIVERSITET

Ap / Bp Type Stars - Some Recent MDI Maps

- 53 Cam Kochukhov et al. (2004) Low resolution
- $\alpha^2 CVn$ Kochukhov & Wade (2010) Low resolution
- HD 37776 Kochukhov et al. (2011) Low resolution Stokes IV
- $\alpha^2 CVn$ Silvester et al. (2014)
- **CU Vir** Kochukhov et al. (2014) *Stokes IV*
- HD 75049 Kochukhov et al. (2014) Stokes IV
- HD 184927 Yakunin et al. (2015) Stokes IV
- HD 24712 Rusomarov et al. (2015)
- **σ** Ori E Oksala et al. (2015) Stokes IV
- HD 32633 Silvester et al. (2015)
- HD 125248 Rusomarov et al. (2016)
- **49 Cam** Silvester et al. In Prep
- **36 Lyn** Oksala et al. In Prep
- a Cen Work in progress with G Wade

MDI Mapping Data

Data for recent MDI mapping has been obtained using one (or more) of the following instruments:

- ESPaDOnS at CFHT (Mauna Kea)
- Narval at TBL (Pic du Midi)
- HARPSpol on the ESO 3.6m (La Silla)

These instruments have proven performance/stability over multiple observing semesters. (e.g in the case of ESPaDOnS/Narval: Silvester et al. 2012).

ESO 3.6m La Silla

TBL at Pic du Midi

MDI Inversions Work

MDI Animation

Magnetic Map of α^2 CVn

Stokes IQUV Inversions derived simultaneously with abundance maps

Magnetic field Map from Iron Lines from MuSiCoS Data vs ESPaDOnS/Narval Data for α^2 CVn

Magnetic Field Map from various line sets using ESPaDOnS / Narval data for α^2 CVn

Weak Fe Lines

Cr Lines

Cr and Fe Lines

This result shows that very similar magnetic structure is derived from differing line sets

Mapping of HD 32633

Early observations of the Ap star HD 32633 indicated that the magnetic field was complex in nature (e.g Babcock 1958, Borra and Landstreet 1980).

Glagolevskij & Gerth 2008 suggested even the presence of a two-dipole structure.

Twenty phase resolved observations of HD 32633 were obtained in Stokes IQUV with ESPaDOnS and Narval (Silvester et al. 2012).

Magnetic Map Diagnosis Comparisons

HD 32633

Modulus

Horizontal

Radial

Stokes IQUV Inversions derived simultaneously with abundance maps

Abundance Mapping of HD 32633

Spherical Harmonic Energies for HD 32633

How do the Spherical Harmonic Energies compare?

New Results and Ongoing Work

36 Lyncis

36 Lyncis

A Cen - He Peculiar Star

49 Cam

Stokes IQUV Inversions derived simultaneously with abundance maps

HARPSpol Open Cluster Ap/Bp Star Project

As introduced in John's talk, this project will allow a probe of magnetic field complexity as a function of age.

The aim is to produce a set of Stokes IV magnetic maps for the target stars.

In Summary

Through recent mapping:

- We have shown the reliability of our inversion procedure.
- With the increasing the number of Ap stars mapped using using MDI:
 - We can now start to investigate how other stellar parameters correlate with magnetic field complexity.
 - We can further look for correlations between abundance structures and the magnetic field.
- HARPSpol Open Cluster Project in particular will allow us to probe age vs magnetic field complexity.

Thank You

Can the magnetic field of HD 32633 be described by a simple dipole or dipole + quadrupolar field ?

Stokes Q

Stokes U

An we we do you we we we was	when the war and the the the the alle alle	0.209
An	- when also also also also also also also also	0.296
when the way we the the way are not	- who was not all all all mor was all mada	0.379
An sa	alonghe so she for she was shown .	0.390
who she she she she was she was	- mor you you you go an war war war when	0.481
Ar water the the the second	- Mon work was not by the way water water	0.546
An the the the the the ser and the	. where now now also and and and maken	0.613
when the ser we all the new many	when when when we also also also when wear and	0.689