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The time-dependent flux-surface-averaged Fokker—Planck equation for the distribution function of
minority ions during ion cyclotron resonant heating introduced by Stix in a classic paper [T. H. Stix,
Nucl. Fusion 15, 737 (1975)] is solved keeping two dimensions (2-D) in velocity space (speed and
pitch-angle). An analysis of the applicability of the method of expansion of the distribution function
f in Legendre polynomials of the pitch-angle, a method suggested by Stix and subsequently used by
others, is given. A full numerical 2-D solution is also calculated. It is shown that the convergence
of the Legendre polynomial expansion is very slow and non-uniform with respect to both particle
energy and pitch-angle, making the method impractical when f is required at energies much higher
than the background plasma thermal energy. However, the iterative sequences for the moments of
S are found to converge very fast. In particular, a good approximation to the pitch-angle average of
the distribution function is obtained already with two terms kept in the expansion, for a wide range
of heating parameters. The validity of Stix’s analytical one-dimensional approximations is analysed

in detail. © 1997 American Institute of Physics. [S1070-664X(97)02906-6]

I. INTRODUCTION

Ion cyclotron resonant heating (ICRH) is one of the
schemes for plasma additional heating in tokamak experi-
ments, and is used in the minority heating regime to accel-
erate particles of a low density ion species by means of ra-
diofrequency (rf) waves at their cyclotron frequency or low
order harmonics."? The collisional slowing-down of minor-
ity ions results in heating the background plasma.

During ICRH, the velocity distribution function of mi-
nority ions becomes strongly non-Maxwellian, a significant
part of the ion energy being in the tail of the distribution.
Therefore, a precise knowledge of the distribution function is
needed for the determination of power transferred to the
background plasma. Also, the non-Maxwellian character of
the hot minority ions will influence the distribution functions
of both the electrons and majority ions and thus the fusion
reaction rate.

A classic work on the distribution function of minority
ions during ICRH is the one by Stix.! He derived a Fokker—
Planck equation for a homogeneous infinite magnetized
plasma including, in addition to collisions, a so-called quasi-
linear term which describes the interaction of minority ions
with the rf wave. His model aims at describing a small vol-
ume around a magnetic surface in a tokamak, in which
plasma parameters are approximately homogeneous. In this
picture, the distribution function f of minority ions is a func-
tion of speed v, the angle @ between the velocity and the
constant direction of magnetic field (the so-called pitch-
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angle) and time ¢, i.e. f=f(v,6,r). The function f is as-
sumed to be independent of the third coordinate in velocity
space, i.e. the phase of gyration along the magnetic field
lines. The background plasma parameters, such as electron
and majority ion density and temperature, and the intensity
and direction of magnetic field, are assumed to remain con-
stant during the heating.

Stix found analytical one-dimensional approximations to
the steady-state solution of his equation, using two distinct
methods. In the first of these, he introduced an expansion of
the angular part of the distribution function in Legendre
polynomials of even order of w=cos 6. He then kept only
the first term in the expansion, corresponding to the assump-
tion that the distribution function is not too far from being
isotropic, and was able to derive a pitch-angle-independent
analytical approximation to f. In the second method he in-
troduced the coordinates (vy,v ), corresponding te velocity
components in the direction of the magnetic field and in
planes perpendicular to it, respectively. By assuming that for
all particles v, >|v||, and integrating the whole equation
over the variable v, he obtained an equation for the aver-
aged distribution f(v, .1)=J %dv| f(v.v, .t) and solved
it analytically.

After Stix’s work, the so-called bounce-averaged theo-
ries were developed.>* Here, a Fokker—Planck equation av-
eraged over both gyrophase and the period of the test par-
ticles’ orbit motion in the tokamak magnetic field is derived.
This approach allows for an appropriate treatment of trapped
particles, neglected in Stix’s model. A number of codes
which solve the bounce-averaged Fokker—Planck equation
for the ICRH problem keeping the two dimensions (v, 8) in
velocity space have been developed in recent years.>®

© 1997 American Institute of Physics



Stix’s analytical solutions are still widely used in the
analysis of ICRH experiments.””® The Stix pitch-angle-
independent approach has been generalized to include finite
Larmor radius effects and second harmonic heating.'™!!

Direct measurements of the distribution function have
been made by means of Neutral Particle Analyzers
(NPAs).!>!* The NPA in the tokamak JET (Joint European
Torus'*) can detect minority ions with energies in the MeV
region.'? For comparison with the directly measured distri-
bution functions, one-dimensional information, like the one
provided by Stix’s formulae, is not sufficient (typically
NPAs measure f at a specified pitch-angle).

A systematic analysis of two-dimensional (2-D) time-
dependent solutions of the Stix original equation is lacking in
the literature and is the subject of the present paper. Such an
analysis is needed in order to establish the meaning and the
degree of approximation of the Stix one-dimensional solu-
tions and other averaged approaches.'o Also, an accurate 2-D
time-dependent solution is required for the comparison with
measurements from the NPA. In addition, as the bounce-
averaged theories calculate 2-D distributions, a 2-D solution
of the Stix model is needed to be able to compare quantita-
tively the two models.

The two-dimensional solution needed for the above pur-
poses can be obtained by solving the Stix equation numeri-
cally using a 2-D grid in velocity space. In this paper, in
addition to providing this purely numerical solution, we also
apply the method of expansion into Legendre polynomials of
the pitch-angle to the solution of the Stix equation. The use
of the method comes as the natural extension of Stix’s work
and makes the comparison with the Stix pitch-angle-
independent solution easier. Furthermore, the expansion into
Legendre polynomials has the important advantage that the
moments of the distribution function can be readily obtained,
as they are related to the coefficients of the expansion by
simple relations.

A few authors have worked towards obtaining a two-
dimensional solution of the Stix equation. In Ref. 15 the first
two terms of the Legendre polynomial expansion are kept in
the steady-state solution, but the coefficients are calculated
using a method appropriate for very low ICRH power den-
sities only. An expansion in irreducible Hermite polynomials
is used in Ref. 16 for the same problem. In Ref. 17 a larger
number of terms in the Legendre polynomial expansion of
the steady-state solution have been retained but convergence
has been studied only for energies not too far from the ther-
mal region. A numerical time-dependent two-dimensional
solution of the Stix equation has been obtained in Ref. 18;
however in that paper the emphasis is on the moments of the
distribution and a detailed analysis of the distribution func-
tion itself is not given.

In this paper we apply the method of expansion in Leg-
endre polynomials of the pitch-angle to the solution of Stix’s
equation, and demonstrate the limits of applicability of the
method. We consider a wide energy range, which includes
the highly non-Maxwellian tail of the distribution. Stix in his
paper derived a set of equations for the first two coefficients
in the expansion only. He recognized (p. 750 of Ref. 1) that
the use of just two terms in the expansion is unsatisfactory
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when the heating powers are large and suggested that addi-
tional terms could be used. To be able to retain more terms,
we derive an equation for the generic coefficient of the Leg-
endre polynomial of order 2n. We study the convergence of
the solution by successively increasing the number of terms
kept in the expansion.

As a further test, we calculate f(v,#6,t) by solving nu-
merically the full Fokker—Planck equation in two dimensions
in velocity space plus time, and compare it with the approxi-
mate solutions obtained using the Legendre polynomial ex-
pansion method. From this comparison we draw conclusions
about the applicability of the method.

The layout of the paper is as follows. In Sec. II we
describe the Stix model and in Sec. III we summarize Stix’s
one-dimensional results. The solution of the Stix equation by
means of an expansion in Legendre polynomials of the pitch-
angle in which an arbitrary number of terms are kept is de-
scribed in Sec. IV. In Sec. V the convergence of partial sums
is studied and a comparison with the full two-dimensional
numerical solution of Stix’s equation is given. In Sec. VI a
comparison between the two-dimensional numerical solution
and Stix’s analytical expression for f(v,) is given. Conclu-
sions are summarized in Sec. VIL.

ll. STIX’S MODEL FOR HEATING AT THE
FUNDAMENTAL FREQUENCY IN THE SMALL
LARMOR RADIUS LIMIT

In a homogeneous infinite plasma with a constant mag-
netic field, a minority species heated by an externally applied
wave at the ion cyclotron frequency is described by its dis-
tribution function f(v,u,t), where v is the particle speed,
u = cos 6, 6 being the angle between the velocity and the
constant direction of the magnetic field (the so-called pitch-
angle) and ¢ is time. The distribution function is assumed to
be independent of the phase of gyromotion.

The equation Stix derived for the evolution of f is'

of
—=C(+0(). M

where:

14
CH)=— 7[wﬁ (&%}
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Here C(f) is the collisional term and Q(f) is the so-called
quasi-linear term, describing the changes in the distribution
function due to particle acceleration by the rf wave.

The collisional diffusion coefficients a(v),B(v) and
v(v) which appear in the above expression for C(f) are the
ones calculated by Chandrasekhar and Spitzer.'* For a test
minority particle colliding with particles of several back-
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ground species (each denoted by a subscript j and of number
density n;, temperature T;, mass m; and charge number
Z;) they are given by

1
a(v)=(Avu)(v)+§;7(v), 2
1
B0)=2 [5G (x)], 3)
1
rw)=2 78[®(x) = G(x)], (4)
Avp)=-3 5’(1 m"‘) 5
(Avp(v)= 2 ;;2; +m—j G(x;), (5)

where x;=v/v,; with v,;=(2T;/m;)""%, the thermal velocity
of background particles of the species j. The functions
®(x) and G(x) are

2 x 2
<1>(x)=erf(x)=—-f e Vdy,
o 6)
D(x)~x(dd/dx)

G(x)= 2x2 y

and the coefficients 6j are

5 _877an,2an634 In A;
i 2 >
m

m

where In A; is the Coulomb logarithm:

Ap 47rnje2 -1
In Aj:ln b_oj, )\D:(§ TJ N

Zijez
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In the above formulae m,, is the mass of minority ions, Z,,
their charge, A the Debye length, w;=m,m;/(m,+m))
the reduced mass and gjz- the mean square value of the rela-
tive velocity between a minority ion and a particle of the
background species j.

The collisional term described above takes into account
collisions between a minority particle and particles of the
background plasma species. The latter are assumed to have
Maxwellian distribution functions. Collisions between mi-
nority ions are neglected, due to the low density of the mi-
nority species with respect to the other background species.
The temperature of background species is assumed to remain
constant in time. This is clearly a limit of this description, as
background plasma species get heated by collisions with mi-
nority ions. In the following we assume the background
plasma to consist of one majority ionic species and electrons.

The expression for Q(f) given in Eq. (1) has been ob-
tained by Stix by averaging the space-localized quasi-linear
operator derived in Ref. 21 over the volume around a mag-
netic surface. Also, the approximation of the small Larmor
radius is introduced and heating at the fundamental fre-
quency only is considered. The constant X in the quasi-linear
term in Eq. (1) is related to (P), the average power per unit
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volume absorbed by minority particles from the rf wave in
the volume under consideration, according to the relation

(P

- 3
3m,,n,

™)

n,, being the number density of minority ions.

lll. STIX’S ANALYTICAL ONE-DIMENSIONAL -
SOLUTIONS

By introducing approximations which reduce the depen-
dence of the distribution function to only one velocity space
variable, Stix was able to find analytical expressions for the
steady state solution of Eq. (1). This was achieved in the
(v,u) coordinate system by neglecting the pitch-angle de-
pendence of the distribution function, and in the (vyvy)
system by integrating the distribution function over the vari-
able v|. We now summarize his results.

A. Pitch-angle-independent solution

If the angular dependence of the distribution function in
velocity space is neglected, the steady-state solution of Eq.
(1) can be found immediately by imposing df/dr=0,
dff/du=0 and analytically integrating the equation. The fol-
lowing boundary conditions are used:

. _af
hmf(v)—hmE(v)—O,

v ® U= X

leading to the following expression for f(v):'

@ _

fo 0 ( iB+K ) v'?
where f;, is a constant which is determined by imposing a
normalization condition on f. The integral in this equation
has been carried out explicitly by Stix by introducing ap-
proximating forms for the functions ® and G which enter the

definitions of the diffusion coefficients @ and B. The ap-
proximations used are as follows:

In

v —av'*+ Hdldv') (Bv'?)
[favr ®

G(x,)=ex,, fD(xe)zexe(3+2x3), 9)
€x; ® exi(3+2x?) 10
G(xi)—‘lj:ze—x?, (xi)——lm, (10)

where the subscript i refers to majority ions and e to elec-
trons, and e=2/(37"%). The use of the above expressions
has allowed Stix to find an explicit formula for f(v) [Eq.
(34) of Ref. 1] and the following formula for the tail tem-
perature of the distribution function:

M P)

7 n,n,,Zt et In A

TiailzTe(l+§)’ §=8 Ute > (11)
where the tail temperature has been defined as the asymptotic
value at large energies of the effective temperature
T E)=—[(d/dE) (In f(v))]"! (here E is particle kinetic en-
ergy).

The validity of the Stix pitch-angle independent solution
as a good representation of the distribution function is lim-
ited to very low ICRH power cases, where f is not too far
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from being isotropic in velocity space. However. his solution
for f(v) and the asymptotic expression for the tail tempera-
ture given by Eq. (11) are frequently used as approximations
to the pitch-angle average of f even in high power cases in
which the distribution is anisotropic. This point will be fur-
ther discussed in Sec. V.

B. f(v,) approximation

Stix re-wrote Eq. (1) in the (vj,v,) coordinates, where
vy and v, are the components of velocity in the direction of
the magnetic field and in planes perpendicular to it, respec-
tively. He then assumed that for all minority ions v, >|v1,l,
i.e. v=v , and introduced the following integral of the dis-
tribution function:

+ o

f(vl,t)=f_ dv) f(vy,v, ,1).
By integrating his equation over the variable v he then
found an equation for f(v,), yielding the following steady-

state solution:

, 1L d , 0%
_avl+7d—v—i(ﬁun+z

lﬂ }:(E—J_z —_ fUJ_ l)’
fo 0 N ( ! i '
ZB+ ) 1()1“~

(12)

Again introducing the approximating forms for the functions

® and G given in Egs. (9)—(10), Stix was able to further

simplify this expression, obtaining an explicit form for

f(v,) [Eq. (38) of Ref. 1] and the following asymptotic
expression for its temperature:

where the parameter & has been defined in Eq. (11) above.

IV. SOLUTION OF STIX’'S EQUATION USING THE
METHOD OF EXPANSION IN LEGENDRE
POLYNOMIALS OF THE PITCH-ANGLE

In this section we introduce an expansion of the distri-
bution function into the Legendre polynomials of w, in order
to facilitate the solution of Eq. (1). This approach was sug-
gested by Stix in his paper, where he at first retained the first
two terms in the expansion and derived the set of equations
for the corresponding coefficients. In the actual solution for
the distribution function in the velocity range above the
background ion thermal velocity, he then kept only the first
term of the expansion and obtained his pitch-angle-
independent solution as given by Eq. (8) above.

Here we generalize Stix’s approach in that we derive the
evolution equation for the generic expansion coefficient and
thus are able to retain an arbitrary number of terms in the
expansion. We write the distribution function as

+x

f(0,m1)= 20 Agy(0.0)P, (). (14)

where only the even Legendre polynomials are considered
due to the symmetry of f in @ around 6= 7/2. Substitution
of this expansion into Eq. (1), multiplication by Legendre
polynomials in succession and integration over du yields an
infinite system of coupled differential equations for the ex-
pansion coefficients. We find that the equation of evolution

d -1 ( 3 f . . o . ~
1 = or the generic coefficient A,,(v,t) of the expansion in Leg
L= | — l =T ]+~ , . . . "
Tiar dE( n f(vi))} ¢ 2§ (13) endre polynomials is given by
|
Ao _|! Az +2a, |Hom 202t Da, = 2 an+ 1)
P 5,84—0,,[( 77 +|c¢,(v) i co(v)—2n(2n )a,,Uz 5( n+ )02 Ay,
PAr—s K 0Az,-2 K PAsnir
—anT+(4n‘3)bn; . —4n(n“1)b"FA2n_2—d,,K—‘ﬁv—2—
K Az, K
—(4n+5)d,,;‘-3v———(2n+3)(2n+])dnz)—zAzn+2, (15)
f
where

3 I
“=i T @,

3n(2n—1)

_ _3(n+l)(2n+l)
" (4n—3)(4n—1)’ i

" (4n+5)(4n+3)°

d 2+ld2 5
E( av”) Edvz(ﬂv)

colv)= =

)
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We see that the system of differential equations generated by
Eq. (15) is of a tridiagonal form, in the sense that the coef-
ficient A,, is directly coupled with A,,_, and A,, ., only.
For n=0 this simplifies further to A, being directly coupled
with A, only. It is also interesting to notice that for K = O the
system fully decouples.

In practice, the expansion given by Eq. (14) is truncated
to n, terms. The finite set of n, equations for the correspond-
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ing coefficients of the expansion is obtained by substituting
into Eq. (15) the values n=0, ,n,— 1 and by imposing
A3, =0 in the equation for A,, _,. For the truncated series
to represent accurately the solution of the original equation,
the number of retained terms needs to be chosen adequately.
This requires an analysis of the convergence of the sequence
of distribution functions obtained withn, = 1,2,3, ... . This
analysis is presented in Sec. V below.

Here we explicitly derive the system of equations for the
coefficients for the case n, = 5, which is the largest value of
n, considered in this paper. By setting n=0, 1, 2, 3, 4 into
Eq. (15) and imposing A,o=0 in the equation for Ag, we
find the following set of equations for the coefficients Ay,
A,, Ay, Ag, Ag:
A, [1 Ay | K]oA,

19_1_ §'B+K 71)74' Cl(v)+2; E'{"CO(U)AO

1 %A,

K K /A,
57 gv?

v dv Sv

A, [1 5 1524,
—={=B+= Kaz+

(16a)

10 k|04,
()t = —|=—

7 vl]ov *| €olv)

P4,

K dA,
-k &v2

v dv

2 A,

X 18 K dA, 30K
7 dv?

7 v ov 7 v (16b)

1 57K A, . L4
— +_
FBr 7K G Tt =7 S5y

114 1<}(9A4

1140 Ky

5 18 §%A,
KRGS

colv)— EK_TBU

18 K dA,

144 KA 45 K52A6
35 0277 1437 au?

45 K dAg 1575 K

(16c)

82K0A6
e1(v)+ 5= ==+ colv)

4 5Ka2A4
& 117 gv?

A [1 +41K\,92A
—— +
ot 2B 55 | av 2

1722 K 21 y

45 K 0A,
R —
11v dv

120 K 28  5Ag

A P 28Kr9A8
11 24 85 v’

51)(9v

1764 K

——85—'?/‘8, (16d)

Ag 1 71K 82A8+
—_=i—fB+ — —_
ot 2P 55 v’

142 K]9As
i)+ 55 Tl

512Ky

28 3Aq
g5 p2 1874

+icolv)— S_EKW

28 K dA4

1344 K

65 —Ag.

(16e)
v
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Systems for cases of smaller 7, are easily obtained from this
one by setting to zero the coefficient Ay, and higher. In
particular we notice that the system of Egs. (16a)—(16e) with
Ay = Ag = Ag=0 (ie., n, = 2) is identical to Eqs. (24)-(25)
of Ref. 1, where the notation A and B is used instead of
Agand A,.

We solve the truncated system of equations for the co-
efficients numerically using an explicit finite difference
method; the full non-approximate expressions for the func-
tions G and ® as by Eq. (6) are used in the calculation of the
collisional diffusion coefficients. The boundary conditions
are [see Egs. (20)-(23)]:

‘?A2n
|,.J 0o 0 Vt n=0, .. ,4,

A2n|v:o=0, Vi, n=1,.. 4,

limA,,(v,t)=0, V¢,

v—o®

n=0,.. 4.

At the initial time the distribution function of minority ions
is assumed to be a Maxwellian with temperature equal to the
background ion temperature, which results in the initial con-
ditions

02
Ao(v,t=0)=exp( - T)’

tm

AZn(vvt:O)EO n:], .. ’4’

where v,,, is the thermal velocity of minority ions at t=0.

The integration in the time domain is carried out until
the steady-state is reached. Typically the steady-state is ob-
tained in a time t=37,,, where 7, is the Spitzer slowing-
down time for a particle of speed in the range v, <v <v,,,
given by?®

3
T =_3_1Tl.f.2&e_ (17)
21+ m,,Im,) 8,
For n,=1, ie., when the system of Egs. (16a)-(16e) is

solved imposing A,=A,;=A¢=A3=0, the Stix steady-state
pitch-angle-independent solution [given by Eq. (8) above] is
recovered. We have used this as a test for our numerical
procedure.

V. CONVERGENCE OF LEGENDRE POLYNOMIAL
EXPANSION AND COMPARISON WITH FULL
SOLUTION ON A 2-D GRID

As a way to assess its convergence, we truncate the Leg-
endre polynomial expansion in succession, i.e. we consider
the cases n,=1, 2, 3, ... , where n, is the number of re-
tained terms. For each n, we solve the corresponding set of
equations for the unknowns Ag,A;, ... Ay, . We see that
at each stage one more coefficient, Ay -2, which was set to
zero at the previous stage, gets involved and its first approxi-
mation is calculated; the coefficients obtained at the previous
stage, i.e. Ag,Ap, ... ,Az,,[_‘,, are updated. We denote the
coefficients  calculated at the stage n, by
AE)"’),A (2"’), e A;’;’:_Z . These are used to calculate the

n,-th approximation to the distribution function, i.e.,
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n,—1

Fr0,p= 2 AL (0P (). (18)
k=0

At each stage the approximation for f gets updated through
the updating of the coefficients Agy,A,, ... Az, —4 and,
more importantly in our case, by adding a new term
A(zlt,)—zph,-z in the sum (18). We study the convergence of

the sequence {f\"”, n, = 1,2, 3, ...}. We expect that the
limit of f"? as n,—co will give the distribution function f.

As a further test of convergence of the Legendre expan-
sion, we also calculate f(v,u,?) by solving numerically the
original equation [Eq. (1)] on a two-dimensional grid. If de-
rivatives in Eq. (1) are carried out explicitly and the variables
(v, 0) are introduced, where 6 is the pitch-angle, one obtains

1 3 2

_ — in2
2B+2Ksm 0

o _

a ci(v)

f
—+
du’?

il

36?

3
~K cos? 6+ Y

K1+cos2 0
2 4

v

3 of 1
ML T

+_
v vl

sin @ cos 8 #f 1 cos @
v dvdl 17 sin 6

+3K

X

3 of
SK(1-2cos 0)—%£+co(v)f. (19)

We have solved this equation by means of an explicit finite
difference method, using a two-dimensional grid in velocity
space. Because of the symmetry of the distribution function
in @ around 6= 7/2, the equation needs to be solved on the
interval 6 € [0,7/2] only. The boundary conditions are as
follows:

of
—| =0, Ve, Vi, (20)
vl _
v=0
of
— =0, V6, Vi, (21)
a0| _
v=0
lim f(v,6,6)=0, V6, Vi, (22)
d J
-0—1; :—2 =0, Vv, V1, (23)
6=0 J 0=m/2

and for the initial condition we have taken a Maxwellian, as
in Sec. IV.

We consider the heating of a hydrogen minority in deu-
terium, for values of the power per unit volume deposited by
ICRH, (P), between 0.1 and 1.0 MW/m®. The electron den-
sity isn, = 2.65X 10" m™?, the ratio of minority ion to elec-
tron density ny/n, = 0.06 and the background temperatures
T,=T,=4 keV.

We now study the convergence of (a) the pitch-angle
average of f; (b) f(v,0) at the values of pitch-angle
0= m/2,7/4 and 0.
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FIG. 1. Pitch-angle average of the steady-state f, versus x=v/v,, . The
heating and plasma parameters are (P) = 0.1 MW/m®, n, = 2.65% 10"
m 3, T, =T, = T,(t+ = 0) = 4 keV; hydrogen minority in deuterium with
nyin,=0.06.

A. Pitch-angle average of f

The pitch-angle average of f(v,u.t) is defined as

+

1 1
(flv,p.t))= EI du f(v,u,t).

-1

When f is expanded in terms of Legendre polynomials of the
pitch-angle [i.e., f is given by Eq. (14)], using the orthogo-
nality property of Legendre polynomials one finds

(flo,p,1))=Aq(v,1). (24)

Therefore the first term in the expansion, Ay(v,?), represents
the pitch-angle average of the distribution function.

In Fig. 1 the steady-state A, for the cases n, = 1,2 and 3
as calculated from the corresponding systems of equations,
for (P)=0.1 MW/m®, are plotted. Here a dimensionless
variable x=v/v,,, is introduced, where v,,, is the minority
ion thermal velocity before the heating. In the same figure
the pitch-angle average of the steady-state distribution func-
tion obtained from the solution of Eq. (19) on a two-
dimensional grid is shown (solid line). The Stix explicit for-
mula [Eq. (34) of Ref. 1] gives values coinciding with the
n, = 1 curve and therefore is not plotted in Fig. 1.

It can be seen that the addition of terms beyond the first
one in the expansion modifies A, considerably. When A,
only is added in the calculation (i.e., n,=2), A, has a tem-
perature in the high energy range which is higher than the
one derived in the case A,=0 (i.e.,, n,=1). The addition of
a further term, A,, (i.e., n,=3) in the expansion does not
modify A, appreciably, and the Ag(n,=3) curve is very
close to the pitch-angle average obtained from the 2-D solu-
tion. The same features are found in high ICRH power den-
sity cases, as is shown in Fig. 2 for (P)=1.0 MW/m®.
Therefore we conclude that a satisfactory approximation to
the pitch-angle-average of the distribution function (which
determines the angle-independent moments of f, such as the
total energy of the minority component, and the fusion reac-
tivity) can be obtained by using a Legendre polynomial ex-
pansion in which two terms are retained, whereas one term
only is definitely insufficient.
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FIG. 2. Pitch-angle average of the steady-state f, versus x=v/v,, , for
power density (P) = 1.0 MW/m®. The other parameters are as in Fig. 1. The
solid line is from Stix’s explicit formula [Eq. (34) of Ref. 1].

Our results contradict claims that a good approximation
to the pitch-angle average of the distribution function can be
obtained by keeping only the first term in a Legendre poly-
nomial expansion also in cases in which the first term only is
not sufficient to describe the distribution function itself.!%!!
We also note that in the approach of Ref. 15 two terms were
kept in the expansion for f, but A, was calculated by setting
A,=0 and was not subsequently modified. Therefore the
pitch-angle-average of this two term approach is the same as
Stix’s.

In Table I the values of the tail temperature of A in the
high energy region are given, for the cases corresponding to
keeping only the first term in the expansion (n, = 1) and
keeping two terms (n, = 2). We see from the table that the
tail temperatures for the latter case are about 30% bigger
than for the former one. The values of the Stix parameter &
and of the tail temperatures according to the Stix analytical
expression T,,,;=T,(1+ &) [Eq. (11) above] are also given
in the table.

We notice that as the ICRH power increases, a discrep-
ancy between the value of T,,;, from the Stix analytical for-
mula and that obtained from the calculation for n, = 1 ap-
pears, giving a total discrepancy between the n, = 2 and the
Stix analytical tail temperature of 50%. This feature is also
noticeable from Fig. 2, which shows a discrepancy between
the n,=1 and the Stix explicit formula curve. This is a con-
sequence of Stix’s use of the approximating forms for the
functions G(x,) and ®(x,) as given by Eq. (9), in the deri-
vation of his explicit formulae for A, and the tail tempera-
ture. The approximate form for G(x,) is accurate only in the
limit v<€v,,, as is shown in Fig. 3. A similar situation takes
place for ®(x,), whereas G(x;) and P(x;) are quite ad-

TABLE I. Temperature of pitch-angle average of f at various ICRH powers.

(P)y (MW/m®) £ TJ1+§) (keV) T,y (keV), n,=1 T, (keV), n,=2

0.1 9.8 43 45 60

0.5 49.3 201 225 300

1.0 98.5 398 483 622
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FIG. 3. Comparison between the exact and approximate forms for the func-
tion G, as given by Egs. (6) and (9)-(10), respectively.

equately represented by Eq. (10). At high ICRH powers a
considerable number of minority ions reaches velocities
close to v,, and the use of the approximate forms therefore
introduces an additional error in the calculation.

B. f(v, 8) at the values of pitch-angle 0= x/2,n/4
and 0

In Fig. 4 a plot of the coefficients of the expansion for
the case n,=5 is given for the steady-state. A, and A¢ are
negative for all values of x. We notice that at low energies
the coefficients decrease very fast, whereas at large values of
energy all five coefficients are of the same order of magni-
tude. This indicates that at high energies the order of magni-
tude of neglected terms of the expansion may be the same as
that of the retained terms, i.e. that the Legendre expansion
may have been truncated too early. Figure 4 clearly shows
that as the energy considered increases, a larger number of
terms in the expansion need to be retained, i.e., the conver-
gence is non-uniform.

This fact is evident also from Fig. 5(a-c), in which plots
of the total distribution, obtained by substituting the coeffi-
cients calculated in succession for n,=1, 2, 3, 4 and 5 into

0.1

0.01

0.00t |

1e-04

1e-05

1e-06

1e-07
0

FIG. 4. Coefficients of Legendre polynomial expansion for n, = 5. Plasma
and heating parameters are as in Fig. 1.
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FIG. 5. f(x,0) in steady-state for §=m/2 (a), =m/4 (b) and 6=0 (c).
Plasma and heating parameters are as in Fig. 1.

Eq. (18), are given for pitch-angles 8= /2, 7/4 and 0. The
distribution function obtained by solving Eq. (19) on a two-
dimensional grid is also plotted (solid line). As one can see,
the convergence is fast only in the low energy range. In the
figures corresponding to 6= /4 and 0, some plots of the
distribution function from the Legendre polynomial expan-
sion are terminated at low values of energy because f starts
assuming negative values. This is a clear indication of the
inadequacy in the high energy range of an expansion in
which only the first few terms are kept.

The value of ICRH power density of (P) = 0.1
MW/m?, considered in Figs. 4-5, is “‘low’’ for JET stan-
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FIG. 6. The —A, in steady-state for the same parameters as in Fig. 1.

dards. Convergence of the Legendre polynomial expansion
for higher power densities worsens and requires a larger
number of terms even for energies not much larger than the
thermal ones. In Ref. 17 the method of expansion in Leg-
endre polynomials has been used to derive a steady-state
solution to Stix’s equation with a finite Larmor radius. In that
work it was claimed that the first 11 terms in the expansion
would give a good enough approximation to f. However, the
convergence of the distribution function expansion after 11
terms was proven only at a single energy, corresponding to
our x=v/v,,,=4 (Fig. 5 of Ref. 17), which is in a rather low
energy range. As can be seen from our Fig. 2 and Fig. 7, at
high heating power densities the range of values of x of
interest extends far beyond x=4. Our conclusion is that the
applicability of the Legendre polynomial expansion to deriv-
ing the full two-dimensional distribution function is limited
to the energies not too far from thermal (for all pitch-angles),
with a possibility of going to higher energies for pitch-angles
in the vicinity of 8= /2, where the anisotropy is less strong.

The failure of the Legendre polynomial expansion to
represent f at all velocities is due to the very strong anisot-
ropy at large energies. Physically, this results from particles
being heated in a preferential direction (the perpendicular
direction) and collisions becoming less frequent and there-
fore less effective in isotropizing the distribution, as the en-
ergy increases. Anisotropy of the distribution at high energy
is important in applications such as wave—particle
interaction!” and hot plasma stability.?? For these applica-
tions and for the comparison with NPA measurements a full
numerical solution on a two-dimensional grid is needed.

It is interesting to notice that while the distribution func-
tion itself is not well represented by the Legendre polyno-
mial expansion, a good approximation to its pitch-angle av-
erage Ay is obtained from an expansion of rather low
dimension (n,=2). In other words, while the convergence of

the sequence {f", n,=1, 2, ...} is slow and nonuniform,
the sequence {Ag") ,n,=1,2, ...} converges very fast. The

latter fortunate property is a consequence of the tridiagonal
structure of the system for the coefficients and applies to
other coefficients beyond A . In Fig. 6 we show the conver-
gence of the coefficient A,, which together with A, deter-
mines the pressure tensor.
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Many common applications such as the calculation of
the energy content, fusion and other reaction rates, current,
pressure tensor, etc., involve integrals of the distribution
function convoluted with physical operators which are
simple functions of the pitch-angle. In these applications the
quantities involved can be expressed in terms of the first few
coefficients of the Legendre expansion, and we conclude that
in these cases the Legendre polynomial expansion is very
useful.

We note that there is no contradiction in the different
convergence rates of the sequences {A (2';') ,n=k+1,k + 2,

...} and the sequence {f"?, n,=1,2, ...}. The fast con-
vergence of the former does not imply a fast convergence of
the latter, in fact it does not guarantee that the latter sequence
converges at all. For example, in the case of a system for the
coefficients of diagonal structure, in which the equations are
uncoupled, the coefficients are immediately determined ac-
curately, but this is no guarantee of convergence of the series
(14), i.e. of the sequence {f"”, n,=1, 2, ...}. Mathemati-
cally speaking, the convergence of the sequences {A (2','(’) , Ny
=k+1,k + 2,...} is anecessary but not sufficient condition
for the convergence of {f"?, n,=1,2,...}.

Vi. COMPARISON BETWEEN THE TWO-DIMENSIONAL
SOLUTION AND STIX'S f(v,)

We now examine the second of the Stix analytical ap-
proximations, f(v,), which has been derived by assuming
that for all minority ions vl>|u”|, ie., v~v, . We first
calculate f(v,) as given by Eq. (12), using the exact forms
for the functions G and @ [Eq. (6)] which appear in the
definitions of the collisional diffusion coefficients. We also
consider f(v,) from the Stix explicit formula [Eq. (38) of
Ref. 1], which he obtained by introducing the approximate
forms for G and ® given by Egs. (9)-(10), and which we
will denote in the following as f(v )appr- This explicit for-
mula is frequently used in the analysis of ICRH experiments
for cases of very high ICRH power density. We then com-
pare f(v,) and f(v,),p,, With the steady-state distribution
function obtained from the solution of the equation on a 2-D
grid, at pitch-angle 6= 7/2.

We find that at low ICRH powers (e.g., (P)=0.1
MW/m®) f(v,) has the same slope in the tail as the 2-D
solution at pitch-angle 6= 7/2, but a disagreement between
the two is found in the thermal region, as expected. For these
ICRH power densities f(v,) and f(v,),,,, coincide.

In Fig. 7 the comparison is presented for a high ICRH
power case ({P)=1.0 MW/m?). The solid line corresponds
to the 2-D solution at @= /2 and the dashed line, almost
coincident with it, to f(v ) from Eq. (12). The dotted line in
the plot corresponds to the Stix explicit formula for
f (U )appr- The tail temperature of the latter distribution, as
calculated for x=30, is T,,;; = 591 keV, in agreement with
the Stix formula T,,;,=T,(1+3¢). The tail temperature of

the 2-D solution [and of f(v,)] is instead T,,;; = 860 keV.
The discrepancy between the two is again a consequence of
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FIG. 7. f(x,m/2) in steady-state from the solution on a 2-D grid compared

with f(v,) [Eq. (12)], for (P)=1.0 MW/m>. Also f(v,)
explicit formula is given.

appr fTOM the Stix

the use of the approximate forms for G and ® in a region in
which v~v,,.

VIi. CONCLUSIONS

In this paper we have presented an analysis of two-
dimensional time-dependent solutions of the flux-surface-
averaged Fokker—Planck equation for the distribution func-
tion of minority ions during ICRH, which was introduced by
Stix in a classic paper.'

We have first applied the method of expansion in Leg-
endre polynomials of the pitch-angle to the problem of de-
riving f(v,u,t), in a manner similar to that by Stix, who had
found the equations for the first two coefficients in the ex-
pansion. We have derived the equation for the generic coef-
ficient A,,(v,t) of the expansion, for the case of heating at
fundamental frequency and in the limit of a small Larmor
radius, for an arbitrary n. We have then solved numerically
the truncated systems of resulting equations for the coeffi-
cients of the expansion, starting from the case in which only
the first term is kept (corresponding to the Stix pitch-angle-
independent approach), and then successively increasing the
number of retained terms up to n,=S5.

We have studied the convergence with increasing n, of
the sequence of the distribution function approximations
£ Also, we have compared these approximations with the
full numerical solution of the original equation obtained by
means of an explicit finite difference method on a two-
dimensional grid in velocity space, which we have devel-
oped. The convergence of the Legendre polynomial expan-
sion to f(v,u,t) has been shown to be very slow and non-
uniform with respect to the speed v, i.e., for a fixed pitch-
angle, the number of terms which are necessary to get a good
approximation to f increases with increasing energy, the
situation worsening as the pitch-angle 8 varies from /2 to
0. Therefore, in situations in which the distribution function
at energies much higher than the thermal ones is needed, the
method of expansion in the Legendre polynomials becomes
impractical.
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However, the convergence with increasing n, of the se-
quences for the coefficients of the expansion is very good. In
particular, a good approximation to the first expansion coef-
ficient Ay, which represents the pitch-angle average of the
distribution function, is obtained already with two terms kept
in the expansion. This coefficient determines the angle inde-
pendent moments of f, such as the total energy in the minor-
ity component, and the fusion reactivity between the tail mi-
nority ions and the bulk ones. When only the first term in the
expansion is retained, the tail temperature of the pitch-angle
average in the high energy region is underestimated by ap-
proximately 30%. Moreover, in high ICRH power density
cases the accurate tail temperature of the pitch-angle average
has been found to be 50% higher than that given by the Stix
analytical formula 7,,,=T,(1+¢&), as the latter formula
contains both the inaccuracy associated with keeping only
the first term in the expansion and that due to the use of
approximating forms for the functions G and ® which ap-
pear in the collisional diffusion coefficients.

We have also analysed Stix’s f(v ;) approximation. We
have found that f(v,) in which G and ® are calculated
exactly is a very good approximation to f(v,f8=n/2) in
steady-state for high ICRH power density cases. The Stix
explicit analytical expression for f(v,) [Eq. (38) of Ref. 1]
and the related formula for its tail temperature
T,.u=T,(1+3&/2) have instead been found to be inaccu-
rate, due to the use of the approximating forms for the func-
tions G and P.

As far as the time dependence is concerned, our results
show that a steady-state is achieved typically within 3
Spitzer slowing-down times for relaxation of fast ions on
electrons, which for typical JET experiments is about 1.5 s.
As the period of sawtooth oscillations is much shorter, we
can conclude that the steady-state might not be reached in
real experiments.
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