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ABSTRACT

The trajectories of solar energetic particles in an interplanetary magnetic field exhibiting large-scale fluctuations
due to footpoint motions originating in the photosphere are simulated using a full-orbit test-particle code. The
cross-field transport experienced by the particles in three propagation conditions (scatter-free, with scattering mean
free path λ = 0.3 AU and λ = 2 AU) is characterized in the Parker spiral geometry. The role of expansion of
the magnetic field with radial distance from the Sun is taken into consideration in the calculation of particle
displacements and diffusion coefficients from the output of the simulations. It is found that transport across the
magnetic field is enhanced in the λ = 0.3 AU and λ = 2 AU cases, compared to the scatter-free case. Values of
the ratios of perpendicular to parallel diffusion coefficients vary between 0.01 and 0.08. The ratio of latitudinal to
longitudinal diffusion coefficient perpendicular to the magnetic field is typically 0.2, suggesting that transport in
latitude may be less efficient.
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1. INTRODUCTION

As solar energetic particles (SEPs) are transported through the
interplanetary magnetic field (IMF) out to locations at 1 AU and
beyond, they experience magnetic field fluctuations which occur
over a range of scales. The main consequences of a particle’s
interaction with such fluctuations are thought to be: (1) diffusion
in the direction parallel to the magnetic field, characterized by
a diffusion coefficient κ||, that typically describes pitch-angle
scattering counteracting the strong magnetic focusing in the IMF
and (2) diffusion in the direction perpendicular to the average
field, characterized by a coefficient κ⊥, thought to be orders of
magnitude smaller than κ||.

Diffusion in the parallel direction has been the subject of a
large number of studies over the past three decades, relevant not
only to SEPs but also cosmic rays and more general particle
propagation in turbulent fields. While the initial consensus was
that diffusion was the main factor determining profiles of SEP
intensity versus time, a paradigm shift took place that implied
the role of interplanetary transport in shaping SEP profiles was
minimal (Reames 1999). More recent studies, however, have
re-affirmed that diffusion does play a role in determining SEP
profiles (Mason et al. 2006).

For SEPs, diffusion in the perpendicular direction has been
largely ignored until recently and is currently the subject of
much interest and controversy. Some of the observational studies
pointing toward perpendicular transport playing an important
role used data at high heliolatitudes from Ulysses (Zhang
et al. 2009; Dalla et al. 2003a, 2003b). Recent observations
from STEREO show that electrons in 3He-rich events reach
spacecraft widely separated in longitude, a fact that may require
transport across the field (Wiedenbeck et al. 2010). A number of
theoretical studies have also addressed perpendicular diffusion
for SEPs, as detailed below.

A common technique when modeling energetic particle
propagation is to adopt a kinetic approach with a diffusion tensor
including parallel and perpendicular diffusion coefficients, κ||
and κ⊥. In this approach, κ|| and κ⊥ are an input to the model and

are estimated using observational data. Particle gyromotion is
neglected and a kinetic transport equation is solved numerically
to give a gyro-averaged phase-space density function for the
SEP population.

Such an approach is taken by Zhang et al. (2009) where
the Fokker–Planck equation is recast into a set of stochastic
differential equations (SDEs) that are solved numerically to
investigate the propagation of high-energy SEPs. They found
that the inclusion of perpendicular diffusion increased the
uniformity of particle flux when calculated at different locations
during the decay phase of a simulated event. This phenomenon
has been observed in SEP events and is referred to as the
“reservoir phenomenon” (McKibben 1972).

A similar approach is taken in He et al. (2011) where the
influence of SEP source characteristics on observations at 1 AU
is investigated. They found that perpendicular diffusion plays a
significant role in SEP propagation, particularly in cases where a
spacecraft is not directly connected to the acceleration region; in
such cases, the earliest arriving particles can be seen propagating
toward the Sun, having scattered backward at large distances.

Dröge et al. (2010) solved the Fokker–Planck equation using a
time-forward SDE method with two different particle scattering
schemes to investigate the spatial distribution of SEPs in the
inner heliosphere. They found that scaling the value of λ⊥—the
mean free path in the direction perpendicular to the field—with
the gyroradius gave more realistic spatial distributions at 1 AU
than when λ⊥/λ|| was kept constant at a value of 0.01.

Another technique that can be used to understand the cross-
field transport of SEPs is a full-orbit test-particle simulation.
In this scheme, a particle’s equations of motion are solved
numerically to determine its trajectory. Such an approach
assumes that test particles do not interact with one another,
or affect the IMF.

Tautz et al. (2011) used a full-orbit test-particle method to
investigate the properties of SEP transport in a model of the IMF
that included isotropic small-scale turbulence. They found that
such turbulence led to diffusive behavior and that λ⊥/λ|| = 0.1
at around 10 AU, slightly larger than observed values.
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In this paper, the propagation of SEPs in large-scale turbu-
lence is investigated by means of full-orbit test-particle simula-
tions. The turbulence is induced by footpoint motion associated
with supergranulation, leading to large-scale fluctuations, ac-
cording to the description first developed by Giacalone (1999)
to investigate the propagation of corotating-interaction-region-
associated particles to high heliolatitudes. He ran full-orbit test-
particle simulations of 1 MeV protons, injected at 2 AU and
integrated for a period of 10 days, and found that field-line
braiding resulting from magnetic footpoint motion provides an
efficient mechanism for latitudinal transport.

Pei et al. (2006) used a test-particle method to investigate the
onset times of SEPs in the IMF model put forward by Giacalone
(1999). They found that such fluctuations can reduce the length
of magnetic field lines and hence lead to onset times for SEP
events shorter than within a Parker spiral model.

Here the effects of large-scale turbulence on the spatial
distribution of SEPs, in particular its role spreading particles
along the direction perpendicular to the magnetic field, are
investigated. Three propagation regimes are analyzed: a scatter-
free regime and two scattering ones with different mean free
paths. Diffusion coefficients are calculated from the output of
the test-particle model and the influence of the expansion of
Parker spiral magnetic field lines on their values and evolution
discussed.

An overview of the IMF model and the parameters used in
simulations is presented in Section 2, along with details relating
to the test-particle method’s implementation. In Section 3, the
results of scatter-free simulations are presented and contrasted
with corresponding simulations which include scattering. Fi-
nally in Section 4, the results are summarized and conclusions
are outlined.

2. MODEL

2.1. Interplanetary Magnetic Field

In this work the IMF model originally introduced by
Giacalone (1999), and further developed by Giacalone & Jokipii
(2004), is used. Large-scale magnetic field fluctuations are gen-
erated by supergranular motion of the footpoints at the solar
surface, with characteristic time Tc and speed Vg.

The resulting fluctuating IMF is given by

Br = B0r
2
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r2
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2
0
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where Vθ (θ, φ, t0) and Vφ(θ, φ, t0) are velocities associated with
footpoint motion, Vw is the solar wind speed, Ω0 is the solar
rotation rate, B0 is the magnetic field magnitude at position r0,
r is radial distance from the Sun, θ is colatitude, φ is longitude,
t is time, and t0 represents the time at which a fluctuation at a
given radius was produced on the solar surface.

Table 1
Values of the Parameters Used in All the Simulations

Parameter Value

B0 (G) 1.78
Vw (cm s−1) 5.0 × 107

Ω0 (rad s−1) 2.86533 × 10−6

Tc (day) 1
Vg (km s−1) 2.0
N 50
r0 (rs) 1

Note. The values of Tc, vg , and N are those used in
Pei et al. (2006).

The velocity of the footpoint motions is modeled by a stream
function ψ(θ, φ, t0), satisfying

Vθ = 1

sin θ

∂ψ

∂φ
(5)
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. (6)

The stream function is postulated to be
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with Nc being the characteristic number of supergranular cells,
defined as Nc = πr0/VgTc, where r0 is taken to be one solar
radius, rs. ωm

n is the characteristic frequency of each mode and
is taken as ωm

n = 2πn/150Tc. The remaining parameters in
the stream function are random phase angles, βm

n , drawn from
a uniform distribution, and Ym

n (θ, φ), the spherical harmonic
function. The values of various parameters used in these
simulations are presented in Table 1.

The electric field is given by E = −Vw × B/c since the
plasma is quasineutral.

In Section 3 the Cartesian system used is defined as follows:
the z-axis is the rotational axis of the Sun, while the x and
y coordinates lie in the heliospheric equatorial plane with the
x-axis corresponding to a longitude of φ = 0◦.

In the simulations presented here all particles are run through
a realization of this IMF model. We set t = 0, giving t0 =
−(r − r0)/Vw, as the timescale of variation of the large-scale
turbulence is large compared to the particle propagation times
considered.

2.2. Particle Simulation

The simulations presented in this paper use a full-orbit
test-particle method, which involves numerically integrating
the equations of motion of one particle at a time, repeating
the process for a variety of initial conditions to assess the
propagation of a population.
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Figure 1. x–y (left) and x–z (right) projection of 10 MeV proton locations at t = 30 minutes and t = 60 minutes after injection for scatter-free propagation in fluctuating
IMF (red dots) and Parker IMF (blue dots). The thick dashed line is a Parker spiral line from the center of the injection region, and dotted lines are field lines of the
fluctuating IMF with starting locations at the center and corners of the injection region.

(A color version of this figure is available in the online journal.)

The code is fully relativistic and is a modified version of one
previously used to study particle acceleration during magnetic
reconnection (Dalla & Browning 2005). The numerical tech-
nique used for integration is a Bulirsch–Stoer method (Press
et al. 1993). The Bulirsch–Stoer routine is driven by a func-
tion that adaptively controls the stepsize of integration so as to
produce results to a prescribed accuracy with minimum com-
putational effort. The solution’s accuracy is determined by a
user-specified tolerance value, which sets the fractional error
allowed when integrating from tn to tn+1.

Extensive testing was carried out to find an acceptable
tolerance level for the solver; from these tests it was concluded
that particle trajectories in the fluctuating IMF outlined in
Section 2.1 converged when the tolerance was less than 10−11,
hence the simulations were carried out at a tolerance of 10−12.

The presence of small-scale turbulence in the solar wind
affects the trajectories of particles. Rather than providing a full
description of the interaction of particles with turbulence in
these simulations, its effect is described as a series of scattering
events, each causing an instantaneous change in a particle’s
velocity. This “ad hoc” scattering has been used by many others
in the literature (e.g., Pei et al. 2006).

A mean free path, λ, is fixed and the mean scattering time
tscat is obtained by tscat = λ/v, where v is the particle’s velocity
in a frame of reference which is stationary with respect to the
solar wind. A series of scattering events are then numerically
generated for each particle, with mean time tscat, in such a way
as to form a Poisson distribution. A scattering event involves
first transforming the particle’s velocity vector into the solar
wind frame, then the particle’s velocity vector is reassigned
by drawing a velocity vector at random from an isotropic
distribution, changing both the particle’s pitch and phase angles.
The particle’s new velocity is then converted back into the
inertial frame of reference, and the integration of the particle’s
equations of motion continues.

3. RESULTS

In all simulations presented in this paper a mono-energetic
population of protons, with velocities randomly distributed

in a hemisphere directed away from the Sun, is injected
instantaneously into the interplanetary medium. The location
of injection is a 3◦ × 3◦ area on a spherical surface of radius
21.5 rs centered on a colatitude of 60◦ and a longitude of 1.◦5.

3.1. Scatter-free Propagation

Initial simulations were performed without ad hoc scattering
in order to investigate the cross-field transport of SEPs subjected
only to large-scale fluctuations, and contrast their propagation
in such a field with that in a Parker spiral field.

Figure 1 shows the spatial distributions of 10 MeV protons
30 and 60 minutes after injection. The left panel shows an x–y
projection (along the heliospheric equatorial plane) and the right
panel an x–z projection. Red dots are particles in the fluctuating
IMF configuration and blue dots those in the Parker spiral (long
dashed line). Field lines associated with the fluctuating IMF
are indicated by short dashed lines. It can be seen that the
longitudinal and latitudinal spread of SEPs is much greater in
the fluctuating IMF model than in the Parker spiral.

The smallest scale of the fluctuations is 2πrs/50 = 87 Mm,
this is large compared to the gyroradii of SEPs propagating
close to 1 AU, hence the cross-field transport observed in the
simulation results is simply due to the field-line meandering and
drifts. The particles propagating in the fluctuating IMF model
focus at the same rate as those in the Parker spiral, as can be
seen in Figure 2, showing the evolution of the mean pitch angle
of the populations with time.

To investigate any dependence of SEP propagation character-
istics in the fluctuating IMF on particle energy, proton energies
were varied from 500 KeV to 1 GeV. Results showed that SEP
populations followed the same path through a single realization
of the fluctuating IMF regardless of energy, and hence cross-
field transport in this configuration is due solely to field-line
meandering.

3.2. Propagation with Scattering

The scatter-free simulation described in Section 3.1 showed
that in such conditions cross-field transport in the fluctuating
IMF is due solely to field-line meandering. In this section the
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Figure 2. Plot of average pitch angle vs. time for all particles in the Parker
spiral (dashed line) and the fluctuating IMF (solid line) simulations. The proton
energy is 10 MeV and the distance from the Sun at the final time is about
215 rs.

effect of ad hoc pitch-angle scattering, incorporated into the
model as outlined in Section 2.2, is studied.

Figure 3 shows populations of 100 MeV protons propagating
in the fluctuating IMF. Each column shows a particle population
at three different times for a given propagation condition. The
initial conditions are the same in the three cases. The central
and right columns are affected by pitch-angle scattering, with
mean free paths of 2.0 AU and 0.3 AU, respectively, and the
left column shows scatter-free propagation. In the scattered
populations there are a number of particles close to their
injection point at late times, in addition to a number of outlying
particles that have strayed a large distance across the field
compared to the scatter-free case.

To quantify the cross-field transport within the simulations,
the parallel and perpendicular displacements of the particles’
location from the Parker spiral field line originating from their
initial positions were calculated, for runs of 10,000 protons of
50 MeV energy. The first step consists of deriving the so-called
target point, i.e., the location on the Parker spiral field line
starting at the particle’s initial position, located nearest to the

Figure 3. x–y projections of a population of 2000 100 MeV protons propagating in the fluctuating IMF at three different times. The left column is for scatter-free
propagation, the central one for ad hoc pitch-angle scattering with λ = 2.0 AU, and the right one for scattering with λ = 0.3 AU. Times indicated are dimensionless,
but can be converted to hours using 1.0e + 7 = 1 hr. The gray lines are magnetic field lines with seed points on a grid overlaid on the injection region. For the
λ = 2.0 AU case, many particles have propagated to large radial distances and are not shown in the plot.

(A color version of this figure is available in the online journal.)
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Figure 4. l|| (top), Δsθ ′ (middle), and Δsφ′ (bottom) distributions of 50 MeV
protons at a time corresponding to around 3 hr. Unscattered population: light
gray, λ = 2.0 AU population: gray, and λ = 0.3 AU population: black.

actual final position (Tautz et al. 2011; see Appendix A.2 and
Figure 11). If r indicates the location of a particle at a given time
and rt is the location of the target point, the displacement of the
particle with respect to its target location is Δs = r − rt . Next,
a local Parker spiral coordinate system, centered in the target
location, is introduced, with an axis pointing outward along the
spiral (the “parallel” direction), a second axis in the direction of
eθ ′ = −eθ with eθ the standard spherical coordinate system unit
vector, and a third axis eφ′ completing the orthogonal system
(see Appendix A.1). The components of Δs⊥ in this system
are Δsφ′ and Δsθ ′ . The distance traveled along the Parker spiral
between the initial location and the target point is indicated as l||.

The distributions of displacements for the three propagation
conditions of Figure 3 are examined first after a fixed time from

Figure 5. Δsθ ′ (top) and Δsφ′ (bottom) distributions of 50 MeV protons,
normalized by Parker spiral flux tube widths lθ and lφ , respectively, as defined
in Appendix A.3, at a time corresponding to around 3 hr. Propagation conditions
are indicated as in Figure 4.

injection (when the average radial distance from the Sun in the
population will be different in the three cases) and second at the
times when the average distance from the Sun is the same for
the three populations and set to 1 AU.

Figure 4 shows the distributions of the displacement’s com-
ponents for the scatter-free, λ = 2 AU, and λ = 0.3 AU condi-
tions, for 50 MeV protons, 3 hr after injection. The top panel,
displaying the distribution of l||, shows that the population with
λ = 0.3 AU has traveled the shortest distance along the field,
followed by the λ = 2.0 AU case, and that the unscattered case
has traveled the farthest, as one would expect. This difference
in average field-parallel displacement affects the magnitude of
perpendicular displacement, as the spread of the field lines in
the perpendicular direction increases with distance along the
field. This leads to the distributions in the middle and bottom
panels of Figure 4, where the scatter-free population has wide
distributions since all these particles have been able to travel a
greater distance along the field.

In an attempt to remove the effect of field-line expansion
on Δs⊥ plots, Δsθ ′ and Δsφ′ values were normalized by the
scale lengths of a Parker spiral flux tube at the corresponding
distance from the Sun, as defined in Appendix A.3. Figure 5
shows the normalized distributions. In the θ ′ component, the
unscattered population still has the widest distribution, while in
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Figure 6. l|| (top), Δsθ ′ (middle), and Δsφ′ (bottom) distributions of 50 MeV
protons at the time when the average radius of each population is 1 AU.
Propagation conditions are indicated as in Figure 4.

the φ′ component the widest distribution is in the λ = 2 AU
case. It should be noted that the normalization introduced only
corrects for the expansion of the Parker spiral field lines: the
superimposed large-scale turbulence may be characterized by a
different kind of expansion which is not accounted for here.

Figure 6 compares Δs distributions at the time when each
population has an average radial distance from the Sun of
1 AU. For the scatter-free, λ = 2 AU, and λ = 0.3 AU
cases, this is 29, 33, and 91 minutes after injection, respectively.
Particles are grouped in this way in an attempt to find the
most appropriate time to compare populations with different
scattering conditions. Populations with little scattering will

Figure 7. Δsθ ′ (top) and Δsφ′ (bottom) distributions for 50 MeV protons at the
time when the average radius of each population is 1 AU, normalized by the
Parker spiral flux tube widths defined in Appendix A.3. Propagation conditions
are indicated as in Figure 4.

reach greater radial distances in a given time than populations
with strong scattering, and at larger radial distances the field-
line expansion due to magnetic field fluctuations will be larger,
artificially increasing the Δs⊥ value assigned to a particle.

Grouping particles this way results in the λ = 0.3 AU pop-
ulation having the broadest distribution in both perpendicular
directions; however, that population has traveled the farthest
along the field (see the l|| distribution in the top panel of Fig-
ure 6) and this produces the pronounced “wings” in the middle
and bottom panels of Figure 6. This effect is similar to that seen
in Figure 4 and is due to field-line expansion.

Figure 7 shows the Δs⊥ components normalized by the Parker
spiral flux-tube scale lengths. The λ = 0.3 AU population has
the broadest distribution in both the φ′ and θ ′ populations. The
distributions for the scattered populations are broader than for
the scatter-free one.

An alternative way to remove the effect of field-line expansion
on Δs⊥ values involves normalizing Δs⊥ by l|| for each particle
in the population at a fixed time 3 hr after injection, giving
the cross-field displacement per unit distance along the field.
The results of this normalization are presented in Figure 8,
which shows that the population with λ = 2.0 AU has the
broadest distribution of Δsφ′/l|| and has many outliers in the
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Figure 8. Δsθ ′/l|| (top) and Δsφ′/l|| (bottom) distributions of 50 MeV protons
at a time corresponding to around 3 hr. Propagation conditions are indicated as
in Figure 4.

plot of Δsθ ′/l||. This result ties in with Figure 3, where the
λ = 2.0 AU population qualitatively appears to have outliers
that have strayed the largest distance across the field.

Particle transport can be characterized by diffusion coeffi-
cients, under the assumption that it is of diffusive character. The
values of diffusion coefficients κ||, κφ′ , and κθ ′ are calculated
from the equation

κ||,φ′,θ ′ = 〈(Δs||,φ′,θ ′ )2〉
2t

. (10)

In the expanding magnetic field the propagation parallel to the
field is a combination of diffusion and focusing-driven stream-
ing. This can be represented as the advection of a diffusively
spreading particle population, in the strong scattering case (Earl
1976). In line with this concept, the parallel displacement Δs|| is
defined relative to the mean position of the particle distribution
as

Δs|| = l|| − 〈l||〉, (11)

where the average is taken over the particle population.
This definition of diffusion coefficient includes the contribu-

tion of displacements in the particle’s trajectory due to large-
scale fluctuations in the magnetic field, and as such may not be
suitable to directly compare with the diffusion coefficient used
in the Parker transport equation.

Figure 9. κ|| (top), κθ ′ (middle), and κφ′ (bottom) running diffusion coefficients
for 50 MeV protons under different propagation conditions. Propagation
conditions are indicated as in Figure 4.

Figure 9 shows the diffusion coefficients calculated from
Equation (10) for the three propagation conditions as a function
of time. For diffusive behavior it is expected that the diffusion
coefficient would reach a constant value. The top panel shows
κ|| for the three populations, although the κ|| values of the
unscattered population are included only for reference, as this
case is not diffusive since the particles are rapidly focused and
travel as a beam. The increase in κ|| with time for the scatter-free
case is due to field-line meandering.

The slopes of plots shown in Figure 9 can be characterized
by the relative differences between values at the midpoint
and final time point in the simulations, as given in Table 2.
In the λ = 2.0 AU case Δκ||/κ|| = 0.28, whereas for λ =
0.3 AU, Δκ||/κ|| = −0.16, so neither curve is constant. For
the perpendicular components of the diffusion coefficient an
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Table 2
The Difference between the Midpoint and Endpoint Values of the Diffusion

Coefficients, Normalized by the Final Value, for Different Propagation
Conditions

λ = 2.0 AU λ = 0.3 AU

Δκ||/κ|| 0.284 −0.163
Δκφ′/κφ′ −0.506 −0.080
Δκθ ′/κθ ′ 0.454 −0.083

Table 3
Diffusion Coefficient Ratios in Different Propagation Conditions

λ = 2.0 AU λ = 0.3 AU

κθ ′/κ|| 0.011 0.0139
κφ′/κ|| 0.043 0.083
κθ ′/κφ′ 0.259 0.169

Note. The values of each diffusion coefficient at the final time were used to
calculate these ratios.

approximately constant value is reached only in the λ = 0.3 AU
case.

The ratios of various diffusion coefficients from each popula-
tion are presented in Table 3. It can be seen that in both scattering
conditions the value of κθ ′/κ|| is about 0.01, while κφ′/κ|| is ap-
proximately 0.08 for λ = 0.3 AU and 0.04 for λ = 2.0 AU.
The ratio of the two perpendicular components of the diffusion
coefficient is not one, as κθ ′/κφ′ ∼ 0.2. This difference may be
due to the fact that electric field drift aids diffusion in the eφ′

direction (Burns & Halpern 1968) or may be a property of the
magnetic field meandering.

The increased value of κφ′ compared with κθ ′ found in these
simulations differs from the conclusion of Jokipii et al. (1995),
based on analysis of magnetic field fluctuations in Ulysses data.
However, this difference may be explained by the fact that
the Ulysses measurements were made at a much larger radial
distance from the Sun.

The diffusion coefficients were also calculated by means of
values of Δsθ ′ and Δsφ′ normalized by the width of a Parker
spiral flux tube, as outlined in Appendix A.3; the plots of the
resulting diffusion coefficients are shown in Figure 10. The
observed decrease in the diffusion coefficients with time can
be understood by noting that in a simple radially expanding
field without scattering, field-line expansion would generate a
dependence like t−1 for the normalized coefficients.

The simulations were also run with two new sets of random
phase angles (βm

n ) in the stream function defined in Equation (7),
and it was found that this does not produce a significant qualita-
tive change in the results. Plots corresponding to Figures 6–10
for the two additional realizations display the same trends as
the figures shown in this paper. Actual values of the diffusion
coefficients are broadly consistent. However, in one of the addi-
tional realizations the ratio κ ′

θ /κ
′
φ at the final time was equal to

1.6 (while in the other additional realization this value was 0.1).
This appears to be related to a large deviation of the magnetic
field lines, from the Parker spiral, in the θ ′ direction.

If the value of N is increased from N = 50 to N = 75 it is
found that the particles’ trajectories are very similar to those in
the N = 50 case, with some small differences due to the fact
that there is less power in the low N modes.

4. DISCUSSION AND CONCLUSIONS

The effect of large-scale IMF fluctuations on the propaga-
tion of SEPs is investigated by means of a full-orbit test-particle

Figure 10. κθ ′ (top) and κφ′ (bottom) running diffusion coefficients for 50 MeV
protons, normalized by the width of a Parker spiral flux tube, outlined in
Appendix A.3. Propagation conditions are indicated as in Figure 4.

method. In the presence of large-scale turbulence, energetic par-
ticle populations experience more extensive cross-field transport
than would be the case in a Parker spiral configuration, due to
field-line meandering (Giacalone 1999).

In this paper, three propagation conditions were analyzed and
the cross-field transport in large-scale turbulence characterized.
In scatter-free propagation SEPs simply follow field lines and the
perpendicular transport observed is the result of magnetic field
characteristics. By comparing populations at the same average
radial distance from the Sun, it was found that when pitch-angle
scattering is present, the perpendicular transport is enhanced
(see also Figure 3). Qualitatively, the introduction of scattering
produces outlying particles that travel much further across the
magnetic field than unscattered particles. The total number of
outliers is small in these simulations, due to computing time
constraints on the total number of particles considered, however
they are representative of a population that can be found at large
separation from the injection region. Observations show that
the SEP fluxes measured at large angular separation from the
source can be orders of magnitude smaller than those detected
by a well-connected spacecraft.

The introduction of scattering makes it possible for particles
to jump onto nearby field lines, by a distance of the order
of the Larmor radius, and, due to field-line meandering, a
superposition of a large number of these events can result in
large cross-field displacement from the original field line.

The Parker spiral geometry poses some challenges to the
interpretation of the simulations. In an attempt to resolve these
challenges a local coordinate system was introduced to yield
parallel and perpendicular displacements from the particle’s
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original Parker spiral field line. The coordinate transformation to
this Parker spiral system (as detailed in Appendix A.1) is generic
and applicable to other heliospheric problems. For different
scattering conditions, particles have traveled different distances
along the field, influencing the calculated cross-field transport
due to expansion of the magnetic field. It is important to take
this effect into account in quantifying cross-field diffusion.

The method has been, first, used to analyze Δs⊥ distributions
for different scattering conditions after a fixed time from
injection. It was found that the population which undergoes
least scattering has the broadest distribution of Δs⊥ values: this
is because the least scattered particles can reach locations far
away from their injection point where expansion and field-line
meandering cause large Δs⊥ values.

Second, displacements were analyzed at different times for
the three regimes, with times chosen so that the average radial
distance from the Sun of the population is 1 AU. It was found
that the λ = 0.3 AU population has the broadest Δs⊥ distribution;
however, this may be due to their having a significant number
of particles at large distances from the Sun.

A normalization of perpendicular displacements was intro-
duced in an effort to minimize the effect of field-line expansion.
The normalization only takes into account the Parker spiral ex-
pansion, thus the expansion of the large-scale turbulence may
not be completely compensated. If the distributions of Δs⊥/Δs||
are plotted, it is seen that the population with λ = 2.0 AU has

the most cross-field transport per unit parallel transport, while
the unscattered case has the least amount of cross-field trans-
port per unit parallel transport. This appears to fit well with the
qualitative conclusion reached from Figure 3 that more distant
outliers are present when λ = 2 AU compared to λ = 0.3 AU.
While it is clearly established that perpendicular transport is en-
hanced in the scattering cases compared to the scatter-free one,
the analysis is not conclusive as to which of the two scattering
regimes results in the most efficient perpendicular diffusion, due
to the challenge presented by field-line expansion.

The ratio of perpendicular to parallel diffusion coefficients
varies from 0.01 to 0.08 for the conditions analyzed. Diffusion
across the field in the latitudinal direction appears slower
than in the longitudinal direction. This is consistent with SEP
observations at high heliolatitude from Ulysses (Dalla et al.
2003b). Transport in longitude could be aided by the electric
field drift which is directed along eφ .

We acknowledge support from the UK Science and Tech-
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grant ST/H002944/1. This work has received funding from the
European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement No. 263252 (COMESEP). We ac-
knowledge use of the University of Central Lancashire’s High
Performance Computing Facility.

APPENDIX

APPENDIX MATERIAL

A.1. Transformation to a Local Parker Spiral Coordinate System

A new coordinate system with origin at a point (xt , yt , zt ) in space and one axis coinciding with the Parker spiral magnetic field
direction at the point is introduced. The el axis points outward along the local direction of the Parker spiral magnetic field, a second
axis is in the direction of eθ ′ = −eθ , with eθ the standard spherical coordinate system unit vector, and a third axis eφ′ completes the
orthogonal right-handed system. The latter axis does not coincide with the standard spherical coordinate system unit vector eφ .

The angle between the radial direction and the direction of the magnetic field at the point is indicated by β and is given by

β = tan−1

(−Bφ

Br

)
= tan−1

(
r Ω0 sin θ

Vw

)
, (A1)

where the terms Br and Bφ are the radial and longitudinal components of the Parker spiral magnetic field and can be found by setting
Vθ = Vφ = 0 in Equations (1) and (3).

If a vector has components (vx, vy, vz) in the Cartesian coordinate system introduced in Section 1, its components (vl, vφ′ , vθ ′ ) in
the new Parker spiral coordinate system are given by[

vl

vφ′

vθ ′

]
=

[
sin θ cos φ cos β + sin β sin φ sin θ sin φ cos β − sin β cos φ cos β cos θ

− cos β sin φ + sin θ sin β cos φ cos β cos φ + sin θ sin β sin φ cos θ sin β
− cos θ cos φ − cos θ sin φ sin θ

][
vx

vy

vz

]
. (A2)

A.2. Determining the Target Point

The target point is the location on the Parker spiral field line starting at the particle’s initial position with the shortest distance to
the particle’s actual final position (Tautz et al. 2011; see Figure 11).

The target point is determined by means of an iterative procedure that differs from the one used by Tautz et al. (2011). As an initial
guess for the distance from the Sun of the target location, rt, the value of the actual radial distance for the particle is used. For a given
rt, the target longitude can then be found as φ(rt ) = φ0 − (Ω0(rt − r0)/Vw) given the particle’s initial colatitude θ0, longitude φ0, and
initial radius r0. The target colatitude is θ0. If the Cartesian components of this initial target location are indicated as xt, yt , and zt ,
the Cartesian components of the Δs vector with respect to this target can be obtained. Using the transform defined in Equation (A.1),
this can be converted into its components in the local Parker spiral coordinate system defined in Appendix A.1.

The optimal target location will have a zero component along the el axis and can therefore be found by solving the equation

(sin θ cos φ cos β + sin β sin φ)[xe − xt ] + (sin θ sin φ cos β − sin β cos φ)[ye − yt ] + (cos β cos θ )[ze − zt ] = 0, (A3)

where (xe, ye, ze) is the particle’s actual location. The equation is solved by means of Brent’s method (Press et al. 1993). This ensures
that the particle’s displacement with respect to the optimal target location is perpendicular to the Parker spiral.
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Figure 11. Example particle trajectory (dotted) and the path of its original Parker spiral field line (solid) are shown in the x–y plane (left) and the x–z plane (right).
The particle’s end point and target point are indicated by black dots. The target point was acquired by solving Equation (A3), hence the perpendicular displacement of
the particle from its original Parker line is simply the distance between its end point and its target point.

Care must be taken when specifying the bracketing region to ensure that only one root of Equation (A3) lies within the region
specified, and that this root corresponds to the closest target point to the particle end point.

A.3. Normalization by Scale Length of Parker Spiral Flux Tube

The cross-section of a Parker spiral flux tube increases with radial distance from the Sun. In this section, the scale lengths
characterizing the cross-section in the φ and θ directions are determined, indicated as Lφ and Lθ , respectively. These quantities are
used to normalize perpendicular particle displacements so as to remove the effect of Parker spiral field-line expansion.

The borders of the particle injection region, located at a distance r1 from the Sun and with angular extent Δφ and Δθ in longitude
and latitude, respectively, define a Parker spiral flux tube with cross-section approximated by σ1 = r2

1 Δφ Δθ . If the cross-section of
the same flux tube at a distance r from the Sun is indicated as σ , the conservation of magnetic flux requires that σ = σ1B1/B, where
B1 is the magnetic field magnitude at r1 and B its value at r.

In the Parker spiral,

B = B0r
2
0

r2

√
1 +

r2

a2
, (A4)

where a = vsw/(Ω0 sin θ ). Hence,

σ = r2 Δφ Δθ

√
r2

1 + a2

r2 + a2
, (A5)

giving the following expressions for the cross-sectional scale lengths:

Lφ = r Δφ

√
r2

1 + a2

r2 + a2
(A6)

Lθ = r Δθ. (A7)

Lφ and Lθ are calculated using r1 = 21.5 rs and Δφ = Δθ = π/60.
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