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ABSTRACT

We present a comprehensive series of simulations to study the secular evolution of disk galaxies expected in a
�CDM universe. Our simulations are organized in a hierarchy of increasing complexity, ranging from rigid-halo
collisionless simulations to fully live simulations with gas and star formation. Our goal is to examine which structural
properties of disk galaxies may result from secular evolution rather than from hierarchical assembly. In the vertical
direction, we find that various mechanisms lead to heating, the strongest of which is the buckling instability of a bar,
which leads to peanut-shaped bulges; these can be recognized face-on even in the presence of gas. We find that bars
are robust structures that survive buckling and require a large (�20% of the total mass of the disk) central mass
concentration to be destroyed. This can occur in dissipative simulations, where bars induce strong gas inflows, but
requires that radiative cooling overcome heating. We show how angular momentum redistribution leads to increasing
central densities and disk scale lengths and to profile breaks at large radii. The breaks in these simulations are in
excellent agreement with observations, even when the evolution is collisionless. Disk scale lengths increase even
when the total disk angular momentum is conserved; thus, mapping halo angular momenta to scale lengths is
nontrivial. A decomposition of the resulting profile into a bulge+disk gives structural parameters in reasonable
agreement with observations although kinematics betrays their bar nature. These findings have important im-
plications for galaxy formationmodels, which have so far ignored or introduced in a very simplified way the effects of
nonaxisymmetric instabilities on the morphological evolution of disk galaxies.

Subject headings: galaxies: bulges — galaxies: evolution — galaxies: formation —
galaxies: kinematics and dynamics — galaxies: photometry — galaxies: spiral

Online material: color figures, mpeg animation

1. INTRODUCTION

In the current paradigm, galaxy formation is hierarchical (e.g.,
White & Rees 1978; Steinmetz & Navarro 2002). Indeed, evi-
dence can be found of continued accretion onto both the Milky
Way (Ibata et al. 1994; Helmi et al. 1999) and M31 (Ferguson
et al. 2002). Although the standard framework of disk formation
in such cosmogonies was formulated some time ago (White &
Rees 1978; Fall & Efstathiou 1980), disk galaxy formation re-
mains a challenging problem for both simulations (e.g., Navarro
& Steinmetz 2000; Abadi et al. 2003) and semianalytical models
(e.g., Somerville & Primack 1999; Hatton et al. 2003; van den
Bosch 1998, 2000, 2001, 2002; Firmani & Avila-Reese 2000;
Mo et al. 1998; Dalcanton et al. 1997; Benson et al. 2003; Cole
et al. 1994, 2000; Baugh et al. 1996; Kauffmann et al. 1993). The
latest generation of simulations produces disks having roughly
the correct sizes and structural properties (Governato et al. 2004;

Abadi et al. 2003; Sommer-Larsen et al. 2003). This is due partly
to the increased resolution that reduces the artificial loss of an-
gular momentum of the baryonic component. At the same time,
it has been realized that only halos with a quiet merging history
after z � 2 can host disk galaxies today (but see Springel &
Hernquist 2005). Therefore, in the current picture most of the
mass of the disk is assembled from the smooth accretion of gas
cooling inside the dark halo (combined with the accretion along
cold filaments for lower mass objects; Katz & Gunn 1991; Katz
et al. 2003; Birnboim&Dekel 2003; Kereš et al. 2005) following
an intense phase of merger activity that can give rise to the stellar
halo and a massive old bulge.

During disk assembly, secular evolution must have played
a role in shaping the structure of disk galaxies as we see them at
z ¼ 0. Nonaxisymmetric instabilities, particularly bars, drive a
substantial redistribution of mass and angular momentum in the
disk. A possible product of bar-driven evolution is the formation
of a bulgelike component. Such a component will have a stellar
population similar to that of the disk and is thus younger than the
old spheroid formed by the last major merger. Low-mass bulges
may result from such a mechanism; observed low-mass bulges
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have disklike, almost exponential stellar density (Andredakis &
Sanders 1994; Courteau et al. 1996; de Jong 1996; Carollo et al.
1997, 1998, 2001, 2002; Carollo 1999; MacArthur et al. 2003)
and in some cases disklike, cold kinematics (Kormendy 1993;
Kormendy et al. 2002). Comparison between bulge and disk pa-
rameters shows a correlation between the scale lengths of bulges
and disks (de Jong 1996;MacArthur et al. 2003) and, on average,
similar colors in bulges and inner disks (Terndrup et al. 1994;
Peletier & Balcells 1996; Courteau et al. 1996; Carollo et al.
2001). The disklike properties of bulges and the links between
bulge and disk properties have been suggested to indicate that
bulges may form through the evolution of disk dynamical in-
stabilities such as bars, which are present in about 70% of disk
galaxies (Knapen 1999; Eskridge et al. 2000). Further evidence
for secular evolution comes from edge-on galaxies, where bulges
are often found to be box- or peanut-shaped (Lütticke et al. 2000),
a shape associated with evolution driven by the presence of a bar
(Combes & Sanders 1981; Pfenniger 1984; Combes et al. 1990;
Pfenniger & Friedli 1991; Raha et al. 1991; Kuijken&Merrifield
1995; Bureau & Freeman 1999; Bureau & Athanassoula 1999;
Athanassoula & Bureau 1999).

Secular evolution must also be considered for comparisons of
predictions based on semianalytic models of disk formation and
observations to be meaningful. In the standard picture baryons
cooling in dark halos to form a disk have the same specific an-
gular momentum of the dark matter, and this is conserved during
collapse. Then the distribution of disk scale lengths can be com-
puted from the known distribution of halo angular momenta
(e.g., Dalcanton et al. 1997; Mo et al. 1998; van den Bosch 1998).
However, de Jong&Lacey (2000) found that thewidth of the ob-
served disk scale length distribution at fixed luminosity is smaller
than that predicted by such simple models. This suggests that
the mapping between initial halo angular momenta and disk scale
lengths cannot be so trivial. In addition to complications from the
cosmological side, including that the initial specific angular mo-
mentum distribution of the baryons need not be like that of the
dark halo (e.g., van den Bosch et al. 2002) and angular momen-
tum distributions favoring disks more centrally concentrated than
exponential (Firmani & Avila-Reese 2000; van den Bosch 2001;
Bullock et al. 2001), secular evolution will also change disk struc-
ture. In the simplest prescriptions this is not considered, while it is
known since Hohl (1971) that bars can drive substantial evolution
of disk profiles.

Which structural properties of present-day disk galaxies are
primordial and which are the result of internal evolution? Al-
ready by z � 1 a population of disk galaxies with scale lengths
similar to those of a local population is observed (Lilly et al.1998),
suggesting that the structural properties of disk galaxies have not
changed substantially since then. If the quiescent phase of disk
assembly starts early, as current cosmological simulations sug-
gest, secular evolution might have already been operating by
z ¼ 1. Verification that the secular evolutionary timescale can be
sufficiently short is thus required. With the present algorithms
and computing power, simulations of individual isolated galax-
ies are best able to achieve sufficient force and mass resolution to
address such issues. Simulations of individual galaxies decoupled
from the hierarchical growth have the additional advantage of
exploring directly the role that internal secular evolution plays in
shaping the currently observed galaxy population.

In this paper we report on a series of such simulations ex-
ploring how disks evolve in the presence of a bar. An important
goal of this paper is to demonstrate the wealth of structural prop-
erties possible in cosmologically motivated disk galaxies and to

identify what properties of the mass distribution of disk galaxies
may result from internal evolution, rather than arising directly
from hierarchical assembly. We identify several structural prop-
erties we would like to test secular evolution for: vertical thick-
ening, inner profile steepening, profile breaks, and bar destruction.
We explore simulations in which the full disk-halo interaction
is self-consistent in cosmologically motivated dark matter halos
with and without gas and star formation. We use various pre-
scriptions for gas physics, to understand how this impacts the
evolution. We also use rigid-halo simulations as in Debattista
et al. (2004, hereafter Paper I), which allow us to study a variety
of phenomena at high spatial and mass resolution. These simu-
lations also help us to isolate physical mechanisms by which
secular evolution occurs. Together these simulations allow us to
assess the impact of secular evolution on disk galaxies.

2. METHODS

2.1. Live-Halo Models

Live-halo models are built using the technique developed by
Hernquist (1993; see also Springel & White 1999). The struc-
tural properties of halos and disks are tied together by the scaling
relations expected in the currently favored structure formation
model,�CDM.We start by choosing the value of the circular ve-
locity of the halo at the virial radius, Vvir, which, for an assumed
cosmology (hereafter�0 ¼ 0:3,� ¼ 0:7,H0 ¼ 65 kms�1Mpc�1),
automatically determines the virial mass,Mvir , and virial radius,
Rvir , of the halo (Mo et al. 1998). Halos are isotropic and have
angular momentum that is specified by the spin parameter, k ¼
½J 2 Ej j/(G2M 5

vir)�
1=2

, where J and E are, respectively, the total an-
gular momentum and total energy of the halo and G is the gravi-
tational constant.We use k ¼ 0:045 throughout, close to themean
value measured in cosmological simulations (e.g., Gardner 2001).
The halo density profile is an NFW (Navarro et al. 1996) with a
given value of the concentration c, where c ¼ Rvir /rs, rs being the
halo scale radius. The higher the concentration, the higher the
halo density near the center at a given value ofMvir (and therefore
the more steeply rising is its inner rotation curve). Adiabatic con-
traction of the halo due to the presence of the disk is taken into
account by assuming that the spherical symmetry of the halo is
retained and that the angular momentum of individual dark mat-
ter orbits is conserved (see Springel & White 1999). The disk
mass fraction relative to the halo virial mass, fd ¼ Md /Mvir, is
0.05, consistent with estimates for galaxies in the local universe
(e.g., Jimenez et al. 2003), and is conservatively lower than the
estimate of the universal baryonic mass fraction yielded byWMAP
(Spergel et al. 2003). Our models implicitly assume that the disk
forms out of collapsed gas that started with the same specific
angular momentum as the halo and that such angular momen-
tum was conserved during infall (Mo et al. 1998). The disk has
an exponential surface density profile with scale length Rd that is
determined by the value of k (which sets the degree of available
centrifugal support) and by the values of c, fd , and Mvir (which
together set the depth of the potential well). The setup of the
stellar disk is complete once the Toomre parameter, Q(R), is as-
signed (Toomre 1964). This corresponds to fixing the local radial
velocity dispersion �R, since Q(R) ¼ �R�/3:36G�s, where � is
the local epicyclic frequency,G is the gravitational constant, and
�s is the disk surface density. The velocity field of the disk is cal-
culated as in Springel & White (1999; see also Hernquist 1993);
in particular, the radial and vertical velocity dispersions are as-
sumed to be equal, and the azimuthal velocity dispersion is deter-
mined from the radial dispersion using the epicyclic approximation.
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Dark matter halos are sampled using 106 particles and stellar
disks by 2 ; 105 particles. The gravitational softening of both
components is equal to 300 pc. We reran a few simulations with
higher resolution (5 ; 106 halo particles and 5 ; 105 disk parti-
cles) and smaller softenings (50 pc; see Paper I) to check for
resolution effects. We found the analysis presented in this paper
to be fairly insensitive to the resolution adopted, and in the re-
mainder we always show results for runs with the standard res-
olution. The live-halo models used in this paper have structural
parameters in line with the expectations of �CDM models for a
Milky Way–sized system. These models are similar to the mass
models of the Milky Way presented by Klypin et al. (2002). The
rotation curve of the collisionless models used in the paper is
shown in Figure 1. All collisionless models have the same ro-
tation curve since they differ only in terms of their Toomre pa-
rameter. These simulations were carried out with the parallel
multistepping tree code PKDGRAV (Stadel 2001).

2.2. Smoothed Particle Hydrodynamics Simulations

Gasdynamical simulations were carried out with GASOLINE,
an extension of PKDGRAV (Stadel 2001) that uses smoothed
particle hydrodynamics (SPH) to solve the hydrodynamical
equations (Wadsley et al. 2004). The gas is ideal with equation of
state P ¼ (� � 1)�u, where P is the pressure, � is the density, u is
the specific thermal energy, and � ¼ 5/3 is the ratio of the spe-
cific heats (adiabatic index). We are assuming that the gaseous
disk represents the partially ionized hydrogen component of the
galaxy. In its general form the code solves an internal energy
equation that includes an artificial viscosity term to model irrever-
sible heating from shocks. The code adopts the standardMonaghan
artificial viscosity and the Balsara criterion to reduce unwanted
shear viscosity (Balsara 1995). In the adiabatic runs the thermal
energy can rise as a result of compressional and shock heating
and can drop because of expansion. In runs including radiative
cooling energy can be released also through radiation. We use a
standard cooling function for a primordial gas composition (he-
lium and atomic hydrogen).

Dissipational galaxy models are built following the same
prescription described in x 2.1 for live-halo models but include
also a gaseous disk represented by 105 SPH particles each with
a gravitational softening of 300 pc. The basic properties of the
runs performed are shown in Table 1. The disk mass fraction is
fd ¼ 0:05 in all runs except run NG4, which has fd ¼ 0:12. The
gaseous disk has a temperature of 104 K, consistent with the gas
velocity dispersions derived in observations (Martin & Kennicutt
2001). The gaseous disk has an exponential surface density pro-
file with the same scale length as the stellar disk (see Mayer &
Wadsley 2004), and its thickness is determined by local hydro-
static equilibrium. In a gaseous disk the Toomre parameter is de-
fined asQ(R) ¼ cs�/�G�g, where cs is the sound speed and�g is
the surface density of the gas. The global stability of the disk will
be determined by the combined stability properties of the stel-
lar and gaseous disks (Jog & Solomon 1991). Gravitational in-
stabilities can be more vigorous in a cold gaseous disk and might
affect the development of nonaxisymmetry even in the stellar
disk (Rafikov 2001). In particular, in models having 50% gas,
the gaseous disks have Q < 2 over most of the radial extent of
the galaxy, which should make the system unstable to nonaxi-
symmetric perturbations irrespective of the stellar Q (see Rafikov
[2001] for the case in which the sound speed cs is �0.3 of the
radial stellar velocity dispersion as in our models). In the models
with 10% gas instead, the gaseous disk has a high Q, making
them stable to axisymmetric perturbations although they still can
be unstable to nonaxisymmetric perturbations since Q < 2 for
the stars (Binney & Tremaine 1987). The Q profiles of gas and
stars are shown in Figure 2.

Finally, we also include star formation. The star formation al-
gorithm follows that of Katz (1992), where stars form from cold,
Jeans-unstable gas particles in regions of convergent flows (see
also Governato et al. 2004; Stinson et al. 2006). The star forma-
tion efficiency parameter c� ¼ 0:15, but with the adopted scheme
its value has only a minor effect on the star formation rate (Katz
1992). No supernova feedback is included in our simulations.
The rotation curve of themodels with gas can be seen in Figure 3.

2.3. Rigid-Halo Models

These simulations consist of a live disk inside a rigid halo,
which permit large numbers of particles and thus allow high
spatial resolution to be reached. High resolution is particularly
useful for studying the vertical evolution of disks. Rigid-halo

TABLE 1

Sample of Live-Halo Simulations in This Paper

Run

Mdisk

(1010 M�)

Rd

( kpc) Qstar fd fgas Qgas Gas Physics

NC1..... 4.92 3.55 0.7 0.05 0.0 . . . . . .

NC2..... 4.92 3.55 1.0 0.05 0.0 . . . . . .

NC3..... 4.92 3.55 1.7 0.05 0.0 . . . . . .
NG1..... 5.45 3.44 1.7 0.05 0.1 4 RC

NG2..... 5.45 3.44 1.7 0.05 0.1 4 A

NG3..... 5.45 3.44 1.7 0.05 0.1 4 RC+SF

NG4..... 10.9 2.35 1.7 0.11 0.5 0.4 A

NG5..... 5.45 3.44 1.7 0.05 0.5 0.8 RC

Notes.—Mdisk , Rd ,Qstar , andQgas are the disk mass, initial disk scale length,
and the minimum Toomre Q parameter of the stellar and the gaseous disk, re-
spectively. Parameter fd is the fraction of disk (stars+gas) to dark matter mass,
fgas is the fraction of the baryonic mass that is in the gaseous state in the initial
conditions, and ‘‘Gas Physics’’ lists the physics of the gas used: ‘‘RC’’ refers to
radiative cooling, ‘‘A’’ refers to adiabatic, and ‘‘SF’’ refers to star formation.

Fig. 1.—Initial rotation curve of the collisionless live-halo models. The thick
solid line is the total curve, while the thin solid and dashed lines represent the
separate contributions of, respectively, the dark matter and stellar component.
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simulations are better suited to systems in which the disk is dom-
inant in the inner regions because the interaction with the halo is
intrinsically weaker (Debattista & Sellwood 2000).

The rigid halos were represented by either a logarithmic po-
tential with a core

�L rð Þ ¼ v2h
2

ln r 2 þ r 2h
� �

ð1Þ

or a cuspy Hernquist model

�H(r) ¼ � Mh

r þ rh
: ð2Þ

The initially axisymmetric disks were all Sérsic (1968) type,

�d(R; z)¼
Md

2�R2
d

e�(R=Rd)
(1=n) 1ffiffiffiffiffiffi

2�
p

zd
e� 1=2ð Þ(z=zd )2 ; ð3Þ

Fig. 2.—Initial Toomre Q profiles for the collisionless live-halo models (left) and of those including a gaseous component (right). In the left panel we show the
profiles of the models used in runs NC1, NC2, and NC3 in order of increasing line thickness. In the right panel we show the Q profile of the gaseous component in run
NG4 (thick solid line) and run NG5 (thin solid line). The Q profile of the gaseous component in runs NG1–NG3 (not shown) is the same as for NG5 except for the
normalization being a factor of 5 higher (see Table 1). The Q profile of the stars for run NG4 is also shown (thick dashed line). StellarQ profiles of runs NG1–NG3 and
NG5 are equal to that of NC3 except for the normalization (see Table 1).

Fig. 3.—Initial rotation curves of the dissipational live-halo models. On the left is the mass model used in runs NG1, NG2, and NG3, and on the right that used in run
NG4. The thick solid and thick dashed lines are, respectively, the total curve and the contribution of the baryons (stars+gas), while the thin solid and thin dashed lines
represent the separate contributions of, respectively, the darkmatter and stellar component. The rotation curve of run NG5 (not shown) is the same as that in the left panel
except that the curve for gas gets shifted up by a factor of �1.7 (corresponding to a factor of 5 in mass).
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with scale length Rd , massMd , and Gaussian thickness zd , trun-
cated at a radius Rt and a Sérsic index n. Disk kinematic setup
used the epicyclic approximation to give constant ToomreQ and
the vertical Jeans equation to set vertical motions appropriate for
a constant thickness. The disks were represented by (4 7:5) ;
106 equal-mass particles. In units whereRd ¼ Md ¼ G ¼ 1,which
gives a unit of time (R3

d /GMd)
1=2, the values for the disk+halo

parameters such that our rotation curves were always approxi-
mately flat to large radii are given in Table 2. One possible scal-
ing to real units has Rd ¼ 2:5 kpc and Vc ¼ 200 km s�1, so that
Md ¼ 2:3 ; 1010 M� and the unit of time is 12.4 Myr. We adopt
this time scaling throughout but present masses, lengths, and ve-
locities in natural units.

These simulations were run on a three-dimensional cylindri-
cal polar grid code (described in Sellwood & Valluri 1997) with
NR ;N� ; Nz ¼ 60 ; 64 ; 243. We also ran tests with finer grids
to verify that our results are not sensitive to the grid used. The
radial spacing of grid cells increases logarithmically from the cen-
ter, with the grid reaching to �2Rt in most cases; except where
noted,Rt ¼ 5Rd . For all of the simulations in Table 2, the vertical
spacing of the grid planes, �z, was set to 0.0125Rd (except in run
L1, where we reduced this to 0.0083Rd), but we confirmed that
our results do no change with smaller �z. We used Fourier terms
up to m ¼ 8 in the potential,3 which was softened with the stan-
dard Plummer kernel, of softening length � ¼ 0:017Rd , although
we also tested smaller � and larger maximumm. Time integration
was performed with a leapfrog integrator with a fixed time step,
�t ¼ 0:01 (�1:24 ; 105 yr) for all runs with n ¼ 1; otherwise, we
use �t ¼ 0:0025 (�3:1 ; 104 yr). With these values, a circular
orbit at Rd /10 typically is resolved into 600 steps. For the log-
arithmic halos, we set (rh; vh) ¼ (3:3; 0:68), while the Hernquist
halos had (rh;Mh) ¼ (20:8; 43:4).

2.4. Tracking Structural Evolution

Our models host disks that are massive enough to form
bars in a few dynamical times. The formation of the bar is just
one of the mechanisms that drive the morphological evolution
of the disks in our simulations. Spiral structure and vertical insta-

bilities, like the buckling instability, also lead to secular evolution
of disk structural parameters, from stellar density profiles and disk
scale lengths to the bulge-to-disk ratio. In order to track the evo-
lution of our models, we measured the amplitude of the bar, A� ,
as the normalized amplitude of the m ¼ 2 density distribution:

A� ¼
1

N

X

j

e2i�j

�����

�����; ð4Þ

where �j is the two-dimensional cylindrical polar angle coordi-
nate of particle j. The sum extends over stellar particles only. We
measured the m ¼ 2 bending amplitude, Az, similarly:

Az ¼
1

N

X

j

zje
2i�j

�����

�����: ð5Þ

These quantities allowed us to determine when a bar formed and
whether it buckled.

3. VERTICAL EVOLUTION

The vertical direction is best resolved in the rigid-halo simula-
tions, so we begin by considering those. By far the fastest secular
evolution in the vertical direction is driven by the buckling in-
stability. This bending instability, which is caused by anisotropy,
is very efficient at heating the disk vertically.

Raha (1992) described the distortion of a bar during buckling.
As that work is not widely available, we present a description of
buckling in run L2 before exploring its effects on stellar disks.
In the animation accompanying this paper (see also Fig. 4) we
show the evolution of this run between t ¼ 1:0 and 2.2 Gyr. At
t ¼ 1:12 Gyr, the system is largely symmetric about the mid-
plane but develops a small bend by t ¼ 1:18 Gyr, which dis-
places the center toward positive z and the outer parts of the bar
toward negative z. In the outer parts of the bar, where it has its
largest vertical excursion, the bend develops on the leading side
of the bar where it persists for some time, eventually evolving
into a trailing spiral. As it passes the major axis of the bar, it
grows substantially. After this bend has dissipated, the process
repeats another two times (see also Martinez-Valpuesta et al.
2006), with small bends on the leading side of the bar, developing
into stronger bends on crossing the bar’s major axis. At smaller
radii within the bar, the peak bending amplitude occurs close to

TABLE 2

Primary Sample of Rigid-Halo Simulations in This Paper

Run zd /Rd Q n Halo rh /Rd ln A� ln (Az /Rd) B/D nb Rb; eA /Rd; f Rd; f /Rd

L1 .............. 0.025 1.6 1.0 Logarithmic 3.3 �1.54 �3.80 0.44 1.1 0.32 1.7

L2 .............. 0.05 1.2 1.0 Logarithmic 3.3 �1.15 �3.45 0.52 1.3 0.17 2.1

L3 .............. 0.05 1.6 1.0 Logarithmic 3.3 �1.36 �3.77 0.56 0.9 0.47 1.7

L4 .............. 0.10 1.2 1.0 Logarithmic 3.3 �1.77 �8.07 0.36 0.8 0.34 1.7

L5 .............. 0.10 1.6 1.0 Logarithmic 3.3 �1.36 �7.19 0.69 0.8 0.68 1.5

L6 .............. 0.20 1.2 1.0 Logarithmic 3.3 �1.11 �8.07 0.53 0.8 0.44 1.8

S1 .............. 0.05 1.0 1.5 Logarithmic 3.3 �0.81 �3.54 0.61 1.8 0.16 2.3

S2 .............. 0.05 1.0 2.0 Logarithmic 3.3 �1.20 �3.76 0.76 3.1 0.14 1.5

S3 .............. 0.05 1.0 2.5 Logarithmic 3.3 �1.27 �5.91 0.63 1.7 0.12 1.5

H1.............. 0.05 1.2 1.0 Hernquist 20.8 �1.39 �5.68 0.46 1.1 0.22 2.4

H2.............. 0.05 1.6 1.0 Hernquist 20.8 �1.54 �6.83 0.37 1.1 0.51 1.4

H3.............. 0.05 2.0 1.0 Hernquist 20.8 �1.94 �5.22 0.06 1.2 0.70 1.0

Notes.—Parameters zd ,Q, and rh are the disk Gaussian scale height, ToomreQ, and halo scale length, respectively. Parameter n is the index of the initial Sérsic disk
(n ¼ 1 is an exponential disk). In the fifth column we describe the halo type: a logarithmic or Hernquist potential. Parameters ln A� and ln Az are the maximum
amplitudes of the bar and of buckling, respectively. Strong buckling corresponds to ln Az k�4. The quantities B/D, nb , Rb; eA /Rd; f , and Rd; f are all parameters of the
bulge+disk decomposition at the end of the simulation. Here Rd; f is the final value of the scale length. The following simulations were presented also in Paper II: L2 (as
R1), S3 (as R4), L6 (as R6), and H2 (as R7).

3 In order that models remain centered at the origin, we excluded the m ¼ 1
term in the expansion. Including this term would result in large but artificial
offsets between the bar and the center, similar to the ones found by McMillan &
Dehnen (2005).
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the minor axis (e.g., at t ¼ 1:43 Gyr). The region outside the bar
also bends (e.g., at t ¼ 1:55 Gyr), but generally with smaller
amplitude. Small-scale bending persists to late times and is still
ongoing as late as t ¼ 2:60 Gyr. At t ’ 1:42 Gyr, the buckling
produces the largest mean vertical displacement, z ’ 0:157Rd ,
which is more than 3 times the initial disk thickness for this sim-
ulation, zd ¼ 0:05Rd .

Buckling leads to a significant vertical heating: at the center
�w /�u increases from�0.4 to�0.85, and �w /�u averaged inside
R ¼ 1:2 increases by a similar factor, where �w is the vertical ve-
locity dispersion and �u is the radial velocity dispersion. The three
phases of strong bending (which can be seen in the accompanying
animation) can be identified with three phases of strong vertical
heating.

3.1. Peanuts from Buckling

After buckling, model L2 becomes distinctly peanut shaped
when viewed edge-on. The disk scale height hz has increased by
factors of 2–6 depending on where it is measured. It is larger on
the minor axis of the bar than on the major and is smallest at the
center, properties that are typical of all of the rigid-halo simu-
lations but are more pronounced for the buckled bars (see also
Sotnikova & Rodionov 2003). The peanut results in a negative
double minimum in d4, the fourth-order Gauss-Hermite moment
(Gerhard 1993; van der Marel & Franx 1993) of the density dis-
tribution (i.e., the peanut produces a flat-topped density distri-
bution) within the bar. The peanut is also manifest in the face-on
kinematics as a pronounced negative minimum in the Gauss-
Hermite kinematic moment, s4.

4 No similar signature of a peanut
is evident before buckling. In Debattista et al. (2005, hereafter

Paper II ) we developed this into a diagnostic signature of pea-
nuts seen nearly face-on.
Buckling need not always result in a peanut. Both models L1

and L2 formed strong bars and had roughly equal buckling that
vertically heated both disks substantially. However, whereas L2
formed a strong peanut, L1 formed only a weak one.

3.2. Vertical Heating with Live Halos and Gas

The vertical heating of disks in our simulations with live halos
is dominated by the buckling instability when gas is absent.When
gas is present, we found that it may suppress buckling, in agree-
ment with Berentzen et al. (1998). (We tested that this result does
not depend on force resolution by repeating runs with a softening
6 times smaller, i.e., 50 pc.) But this depends on how readily gas
dissipates its thermal energy (see Fig. 10), a point not appreciated
by Berentzen et al. (1998), who performed only isothermal simu-
lations.When the gas can cool (NG1), buckling is suppressed. In
this case the bar amplitude decreases significantly because of the
central gas concentration produced in the inflow driven by the
bar. The reduced bar strength implies a reduced radial anisotropy
in the system, which then is less prone to buckling (Berentzen
et al. 1998). However, the bars in the 10% gas case are not de-
stroyed (see x 4), which suggests that the complete suppression
of buckling does not simply reflect the decrease in bar strength.
This is evident especially in run NG3, which has gas cooling and
star formation, in which a fairly strong bar is present and yet
buckling did not occur. In Berentzen et al. (1998) weak buckling
was always associated with weak bars.
In axisymmetric systems, central concentrations suppress bend-

ingmodes (Sotnikova&Rodionov 2005). Demonstrating a simi-
lar result in the barred case in the presence of gas is nontrivial.
Indeed, whether gas suppresses buckling directly because it can
dissipate bending energy or because it leads to central mass con-
centrations (Berentzen et al. 1998) proved difficult to determine
because any experiment we could conceive of also led to differ-
ent bars. For example,whenwe replaced the central (inner 600 pc)
gas blob formed in run NG1 after�2 Gyr with a point mass hav-
ing equal mass and softening equal to its half-mass radius and
evolved the system as purely collisionless, we found that the bar
buckled, but in the meantime it also grew stronger. While we
were not able to design a clear test for these two hypotheses, our
results do exhibit a correlation between buckling amplitude and
central mass concentration (Fig. 5).
Vertical heating in the presence of gas occurs even without

buckling, as shown in Figure 6. In NG1 and NG3, in which no
buckling occurs, we still see an increase in the vertical stellar ve-
locity dispersion. This heating is gentle, with �z /�R increasing
nearly linearly with time and never falling below the critical
threshold of �0.4. The cause of this vertical heating appears to
be scattering by spirals in the gas disk, which remains signifi-
cantly thinner than the stellar disk in this simulation. In contrast,
heating by buckling, as in run NG2 (in which the gas disk quickly
became thicker than the stellar disk), is abrupt. The gas thickness
in this simulation results from a steadily increasing temperature
as a result of shock heating.

3.3. Peanuts without Buckling

The live-halo simulations show an alternative way in which
peanuts can form. The gas-free live-halo simulations all buckled
and in the process formed peanuts no different from those de-
scribed above. In some simulations with gas (e.g., NG3) we
found peanuts forming without buckling. It is possible that these
formed by direct resonant trapping of orbits in the growing bar

4 We use Gauss-Hermite moments in which the velocity scale is the rms
velocity. In order to distinguish this from the more commonly used best-fit
Gaussian scale, we refer to this moment as s4 rather than h4.

Fig. 4.—Bending in run L2 at the peak of the bend, t ¼ 1:43 Gyr in our
adopted scaling. [See the electronic edition of the Journal for a color version of
this figure, which is also available as an mpeg file in the electronic edition.]
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potential (Quillen 2002). Indeed, in run NG3 A� increased by a
factor of about 2 over a period of �2 Gyr (Fig. 10).

3.4. Peanuts in the Presence of Gas

We showed in Paper II that peanuts produce prominent min-
ima in the kinematic Gauss-Hermite moment, s4, when viewed
face-on. In Figure 7 we show that a peanut can still be recognized
by a prominent negative minimum in s4 in model NG2, despite
the presence of gas. The reason for this is that the gas sinks to
smaller radii than the peanut.

4. BAR DESTRUCTION

Both the buckling instability and the growth of massive cen-
tral objects have been suggested to destroy bars. We examine
each of these in this section.

4.1. The Collisionless Case

After Raha et al. (1991) showed that buckling weakens bars,
it has often been assumed that bars are destroyed by buckling.
To our knowledge, that buckling destroys bars has never been
demonstrated; indeed, none of the bars in our simulations were
destroyed by buckling. Merritt & Sellwood (1994) noted that
buckling grew stronger when force resolution was increased be-
cause then particles have larger vertical oscillatory frequencies,
destabilizing the bar. Thus, the most damaging buckling occurs
in the rigid-halo simulations, where the vertical structure is best
resolved. We verified that the survival of bars after buckling is
not due to insufficient resolution by running an extensive series
of numerical tests at higher resolution using rigid halos. For these
tests, we used model L2, one of the most strongly buckling simu-
lations. The bar amplitude A� after buckling in these tests turned
out to not be strongly dependent on any numerical parameter.
Thus, that buckling does not destroy bars is not an artifact of
insufficient resolution. This conclusion is also supported by a
higher resolution version of the live-halo simulation of Paper I,
where we increased the number of particles (Nhalo ¼ 4 ; 106,
Ndisk ¼ 2 ; 105) and decreased the softening (� ¼ 50 pc for all

Fig. 5.—Correlation between central mass concentration and the maximum
strength of the buckling instability in the live-halo simulations. NC3 is indicated
by a filled circle, NG2 by a filled triangle, NG1 by an open circle, and NG3 by an
open square. The central mass concentration is measured using the baryonic
(stellar+gaseous) mass within 800 pc relative to the total disk mass (the disk is
always the dominant mass component inside 1 kpc in these models).

Fig. 6.—Vertical heating in models NG1 (dashed line), NG2 (solid line), and
NG3 (dotted line). The top panel plots the ratio of vertical to radial velocity
dispersions at the center of the disks as a proxy for vertical heating. The middle
and bottom panels show the central scale heights of stellar and gaseous disks,
respectively. NG2 buckles, which results in the strong vertical heating seen at
�2.5 Gyr, while the bars in NG1 and NG3 never buckle. But because their gas
disks remain much thinner than the stellar disks, they continue to heat it ver-
tically over a long time.

Fig. 7.—Peanut in model NG2. The top panel shows the edge-on gas density
in the region yj j � 1 kpc, while the middle panel shows the stellar edge-on
density (in the region yj j � 1 kpc). The bottom panel plots d4 (solid line) and s4
(dashed line).

SECULAR EVOLUTION OF DISK STRUCTURAL PARAMETERS 215No. 1, 2006



particles). Again, although buckling was strong here as well, the
bar was not destroyed.

We also checked that increasing spatial resolution does not
lead to stronger buckling in weakly buckling simulations. We
reran simulations L5 and H1 at higher resolution (m ¼ 32, �z ¼
0:005, and � ¼ 0:0083) and found that A� is barely affected,
demonstrating that vertical frequencies were well resolved and
confirming that the weak bucklings are intrinsic.

4.2. The Effect of Bar Slowdown

Although our grid code simulations have high resolutions, they
have rigid halos; thus, bar slowdown (Weinberg 1985; Debattista
& Sellwood 1998, 2000; Sellwood & Debattista 2006) is not
included. Araki (1985) showed that stability to bending modes
in the infinite, uniform, nonrotating sheet required that �w �
0:293�u . As a bar slows, �u is likely to increase, which may
drive a stable bar to instability. To test whether this happens, we
slowed down some of our bars by introducing a retarding qua-
drupole moment

�ret ¼ �0 f (R)g(s)e
�2i(�bar��r) ð6Þ

trailing behind a bar. Here s ¼ (t � t0)/(t1 � t0) and g(s) ¼
�16s2(1� s)2, so that the perturbation is gently switched on at t0
and off at t1. The phase of the bar, �bar, was computed at each
time step by computing the phase of the m ¼ 2 Fourier moment
of all of the particles; since the disk also has spirals, there is a
typical uncertainty of order 	15
 in the bar angle. We therefore
set �r ¼ 30



to be certain that the retarding potential always trails

the bar.We chose the radial dependence of the retarding potential
to be f (R) ¼ R/(1þ R2)2, which ensured that it peaks inside the
bar radius.

We performed these experiments on runs L2, L4, and H2; a
list of all of the experiments is given in Table 3. For run L2, we
switched on the quadrupole shortly after the bar formed and
switched it off before it buckled. In this case we found that the
buckling is then stronger, which leaves the bar�20%weaker but
still does not destroy it.

The other two systems on which we tried such experiments
had not buckled when undisturbed. In these cases, we turned on
the retarding quadrupole after the bar had settled and turned it off
not less than 1.5 bar rotations later. Slowing down these bars re-
sulted in very strong buckling, stronger even than in run L2. But
even in these somewhat extreme cases the bar survives; we illus-
trate this in Figure 8, where we show the various bar slowdown
experiments in model H2. While these bucklings do not destroy

bars, which we determine simply by visual inspection, in a few
cases they leave a much weaker bar, which would be better de-
scribed as an SAB than an SB. In Figure 9 we present the most
extreme example of H2.s4, in which the final bar axis ratio was
b/a ’ 0:85; although weak, this can still clearly be recognized
by visual inspection. The edge-on view of a slice taken around
the bar’s major axis reveals a peanut, which can be recognized
by the double minimum in s4 diagnostic. These slowed bars
probably represent an upper limit to the damage buckling can
inflict on strong bars.
In the live-halo simulations, where the bar can interact with

the halo and slow down, we continue to find that buckling does
not destroy bars. Therefore, we conclude that the bar buckling
instability does not destroy bars (see also Martinez-Valpuesta &
Shlosman 2004).

4.3. Central Gas Mass Growth

We now consider bar destruction via the growth of a massive
central gaseous object. The bottom panel of Figure 10 shows the
evolution of the bar amplitude for models NG1–NG3. The bar
amplitude depends very strongly on the gas physics: when the
gas is adiabatic (NG2), it does not become very centrally con-
centrated and the bar amplitude is not very strongly affected by
the gas. If the gas can cool (NG1), it sinks quickly to the center
and remains there. Thus, the bar forms already much weaker.
Continued infall at later times further weakens the bar. The main

TABLE 3

Series of Simulations to Test the Effect of Bar Slowdown

on the Buckling Instability

Run �0

t0
(Gyr)

t1
(Gyr)

L2.s1.................................... 16 0.74 1.24

L2.s2.................................... 1.6 0.74 1.24

L4.s1.................................... 1.6 2.60 3.10

L4.s2.................................... 4.8 2.60 3.10

H2.s1 ................................... 4.8 2.60 3.10

H2.s2 ................................... 1.6 2.60 3.10

H2.s3 ................................... 0.8 2.60 3.10

H2.s4 ................................... 0.8 2.60 3.72

Note.—Parameter �0 measures the relative amplitude of the
retarding perturbation, while t0 and t1 give the time when the per-
turbation is switched on and off, respectively.

Fig. 8.—Effect of bar slowdown in run H2: whereas the unslowed bar suffers
only a weak bend, slowdown leads to a fierce buckling. However, the bar still
survives. The top and middle panels show the buckling and bar amplitudes,
respectively, while the bottom panel shows the evolution of the bar pattern
speed, �p . The black solid and dashed lines and the gray solid, dashed, and
dotted lines show runs H2, H2.s1, H2.s2, H2.s3, and H2.s4, respectively.
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difference between the cooling and adiabatic simulations is in the
amount of gas that sinks into the center of the disk. In NG1, gas
accounts for �60% of the mass within 500 pc (Fig. 11); with
such a high fraction, it is unsurprising that the bar is weaker. The
softening in these simulations is 300 pc; therefore, the central gas
mass is not well resolved. At these scales the hydrodynamical
resolution is higher than the gravitational force resolution (the

gravitational softening volume contains many times the SPH
smoothing volume) with the result that the collapse of gas toward
the center is inhibited (see Bate & Burkert 1997). Therefore, the
same amount of gas would probably have collapsed to an even
smaller radius had we had greater force resolution, weakening
the bar further. In NG2 gas cannot radiate away the intense

Fig. 9.—On the left is H2.s4 at t ¼ 4:96 Gyr, showing that before buckling the bar was prominent. On the right the system is shown at t ¼ 12:4 Gyr, well after the
imposed bar slowdown. The bar never fully recovers from the strong buckling, and the system is better described as weakly barred.

Fig. 10.—Effect of gas on bar amplitudes. The top panel shows the evolution
of the bar amplitude in runs NC3 (solid line), NG4 (dotted line), and NG5
(dashed line). The bottom panel shows the evolution for runs NG1 (dashed
line), NG2 (solid line), and NG3 (dotted line). [See the electronic edition of the
Journal for a color version of this figure.]

Fig. 11.—Gas mass fraction inside 500 pc in the 10% gas mass runs (bottom)
and the 50% gas mass runs (top). The bottom panel shows NG1 ( filled squares),
NG2 ( filled triangles), and NG3 (open squares). The top panel shows NG4
(open squares) and NG5 ( filled squares). The lower set of points in this panel
show the fraction of the total disk mass that is inside 500 pc; for the cooling
simulation, this fraction is large enough to destroy the bar. [See the electronic
edition of the Journal for a color version of this figure.]
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compressional heating it experiences, and only 10% by mass is
found within 500 pc. Thus, its bar is stronger than in NG1.When
star formation is allowed (NG3), the gas accumulated into the
center drives a starburst. This converts most of the highly con-
centrated gas into stars, which can now support the bar. A strong
bar again forms. Since our simulations do not include feedback,
none of the mass that falls in flows back out; up to t � 2:5 Gyr,
there is very little difference in the (azimuthally averaged) den-
sity profile inside 3 kpc between runs NG1 and NG3. Later pro-
file differences are most likely caused by the difference in the
bars, which, being stronger in run NG3, leads to further infall to
the center.

Not much changes at higher gas mass fraction if the gas is
adiabatic (NG4). Then the gas layer is quite thick, producing a
bar that, although somewhat weaker than in the purely stellar
case (NC3), is still quite strong. When the gas can cool (NG5),
the gaseous disk becomes violently gravitationally unstable and
a new phenomenon appears, namely, the fragmentation of gas
into clumps that sink to the center, dragging an associated stellar
clump. Such clump instabilities have been found in previous sim-
ulations (Noguchi 1999; Immeli et al. 2004) and have been shown
to build central bulgelike objects directly. Immeli et al. (2004)
showed that the rate at which clouds dissipate their energy is the
main parameter that determines whether the clump instability
occurs. As a result of the central mass, only a weak bar forms,
and this is eventually destroyed by continued gas inflow.

In our fully self-consistent simulations with cosmologically
motivated halos, we found that the fraction of the total disk mass
needed to destroy the bar (�20%; Fig. 11) is in very good agree-
ment with that recently found by Shen & Sellwood (2004), as is
the gradual decay of the bar amplitude (Fig. 10). This result is
different from that of Bournaud et al. (2005); we note that our
model NG5 differs from theirs in two important ways. NG5 has a
live halo versus their rigid halos, and the dark matter halo is
strongly concentrated at the center. Both properties of our halos
allow angular momentum to be transferred from bar to halo ef-
ficiently (Weinberg 1985; Debattista & Sellwood 1998), which
may perhaps account for the difference in these results.

5. INNER PROFILE EVOLUTION

We explore the evolution of density profiles at large radii in
x 6, and in x 7 we discuss the bulge+disk decompositions that
result from profile evolution. In this section we explore this evo-
lution qualitatively.

5.1. Buckling and Central Densities

Bar formation leads to a change in density profiles. As was
already noted by Hohl (1971), the central density generally in-
creases while the outer disk becomes shallower. In Figure 12 we
show that bar formation leads to an increase in the central density
in run L2 (here we define central density from particle counts
inside 0:1Rd ’ 5�). Moreover, as already noted by Raha et al.
(1991), buckling may also increase the central density of a disk.
We demonstrated directly that buckling is responsible for an in-
crease in central density by resimulating this system with an im-
posed symmetry about the midplane, which prevents buckling.
Figure 12 shows that when buckling is absent, no further in-
crease in central density occurs. The buckled system is 2.0 times
denser at the center than when it is prevented from buckling.

5.2. Disk Scale Lengths and Angular Momentum

In Paper I we argued that the fact that the evolution of the scale
length of the outer disk changes under the influence of the bar,
even when the total baryonic angular momentum is conserved,

implies that the distribution of disk scale lengths does not follow
automatically from that of halo angular momenta. The increase
in disk scale length is due to transfer of angular momentum from
the bar to the outer disk (Hohl 1971). It is remarkable that the
disk outside the bar remains exponential out to the point where a
break occurs, in both collisionless and dissipative systems. Hohl
(1971) was the first to notice that exponential disks are naturally
obtained after bar formation (outside the bar) even when the ini-
tial disk did not have an exponential profile. Since bars are ubiq-
uitous in galaxies at low and high redshift (Jogee et al. 2004), it
follows that the effect of secular evolution on disk sizes has to be
included in any realistic galaxy formation model.
Not only do bars change disk scale lengths, but the amount

by which they change varies dramatically depending on the Q
profile, even for (nearly) identical initial angularmomentum. Con-
sider models H1, H2, and H3. These all have the same initial con-
ditions other than Toomre Q, leading to P10% difference in the
total baryon angular momentum. Nevertheless, the final values of
Rd range from 1.0 to 2.4 (Table 2). We conclude that the direct
mapping of halo spins into a distribution of disk scale lengths
(e.g., Mo et al. 1998) will not yield correct predictions.

6. OUTER DISK BREAKS

Disk densities do not always exhibit a single exponential pro-
file.More typically a sharp break between an inner and outer pro-
file is evident. These breaks are often referred to as truncations

Fig. 12.—Evolution of the central density obtained from particle counts
within 0.1Rd (top) in the strongly buckling run L2 (black line) and the run with
imposed midplane symmetry (gray line). The bottom panel shows the evolution
of bar amplitude, which reaches similar values in both runs. The middle panel
shows the buckling amplitude. The gray lines show the evolution when sym-
metry about the midplane is imposed; while there is little difference in bar
amplitude, no buckling can occur.
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following the apparently sharp drop-offs first discovered by van
der Kruit (1979). Subsequently, van der Kruit & Searle (1981a,
1981b) fitted sharp truncations to light profiles at large radii. How-
ever, de Grijs et al. (2001) found that truncations occur over a
relatively large region, rather than sharply. The larger sample
of Pohlen (2002) confirmed this result; he found that truncations
are better described by a double exponential profile with a break
radius. For his sample of mostly late-type systems, Pohlen (2002)
estimates that the fraction of disk galaxies with breaks isk79%.
Similar disk breaks have been found up to redshifts of z ’ 1
(Pérez 2004; Trujillo & Pohlen 2005).What is the origin of these
features in the light distribution of disks? In x 5 we showed that
the angular momentum redistribution caused by the bar leads to
an increased central density and a shallower density profile out-
side this. This angular momentum redistribution cannot be effi-
cient to arbitrarily large radii; thus, we may ask whether secular
evolution can give rise to breaks in density profiles.

Studying breaks in N-body simulations is numerically chal-
lenging because they generally occur at large radii, where the
density of particles is low.We therefore ran several high-resolution
rigid-halo simulationswith disks extended as far asRt ¼ 12Rd;with
7.5megaparticles the initial conditions still had�24 kiloparticles

at R � 8Rd and >3 kiloparticles at R � 10Rd , sufficient to prop-
erlymeasure the density profile out to the large radii required.We
chose Rt this large in order to ensure that edge modes (Toomre
1981) do not interfere with other secular effects. The series of
simulations we used in this study is listed in Table 4.

In order to compare our simulations with observations, we
used the double exponential fitting form of Pohlen (2002). We
only fit profiles at 2Rd � R � 8Rd; the lower limit is needed to
avoid the central bulgelike component. At very large radii, the
surface density barely evolves because of the low self-gravity
(although all of our models were evolved for at least three ro-
tations at the outermost radius). Clearly the profile at larger radii
reflects only our initial conditions. A reasonable transition radius
between the initial profile and the secularly evolved profile oc-
curs at R ’ 8Rd , which we use as our upper limit on the double
exponential fits. (For the initial pure exponential profile this is
equivalent to �7 mag fainter than the center.)

These fits give three dimensionless quantities: Rbr /Rin , the
ratio of break radius to inner scale length, Rout /Rin , the ratio of
outer scale length to inner scale length, and 	0;in � 	0;out , the
difference between the central surface brightnesses of the two
exponential fits, which we compare with the data of Pohlen et al.
(2002) and Pohlen & Trujillo (2006).

6.1. The Face-on View

Several of our simulations produced clear breaks of the double
exponential type. We present one example in Figure 13, where
we show the initial and final profiles in run L2.t8. The profile
very quickly develops from a single exponential to a double ex-
ponential. In Figure 14 we plot the evolution of the parameters of
the double exponential profile for this run and for runs L2 and
L2.t12. The formation of the break in these three simulations is
obviously a discrete event. Their bars formed at t ’ 620Myr;Rbr

does not evolve substantially after t ’ 990 Myr. Because of this
near coincidence in time, we conclude that, in these simulations,
the process of bar formation can directly or indirectly somehow
lead to the formation of broken profiles.

Figure 14 also investigates the difference between Rt ¼ 8Rd

(black lines), 12Rd (thick gray lines), and 5Rd (thin gray lines)
(models L2.t8, L2.t12, and L2, respectively). The similarity of
the break parameters in the three simulations shows that the
breaks do not result from edge modes (Toomre 1981). In run L2,

TABLE 4

Simulations Testing Disk Breaks

Run Rt /Rd Q

L2.t8 ........................... 8 1.2

L2.t12 ......................... 12 1.2

L4.t12 ......................... 12 1.2

L5.t12 ......................... 12 1.6

H1.t12......................... 12 1.2

H2.t12......................... 12 1.6

H3.t12......................... 12 2.0

T1.t12 ......................... 12 1.2

Notes.—The first two characters in the
name of each simulation reflect the model from
Table 2 on which that simulation is based by
extending Rt from 5Rd to either 8Rd or 12Rd

(number after ‘‘t’’ in the name of each run).
Model T1.t12 is not based on any in Table 2. It
was produced by adding to run L2 a central
Gaussian: �(R) ¼ �0(e

�R=Rd þ 4e�1=2(R=0:2)2 ).

Fig. 13.—Density profile of run L2.t8 at large radii showing the formation of a break. The left panel shows the azimuthally averaged face-on density profile, with the
dashed line showing the initial conditions and the solid line showing the final profile. In the right panel, which shows the edge-on profile, the two solid lines indicate the
exponential fits over their respective regions, while the crosses show the surface brightness. The dashed line shows the edge-on profile of the initial exponential disk.
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the initial disk did not extend as far as the final break radius; thus,
the break is not an artifact of our initial disk extending to very
large radii. Therefore, all parameters of the double exponential
profile that develops can be considered robust.

In Figure 15 we compare the break parameters of the simu-
lations with the observations of Pohlen et al. (2002) and Pohlen
& Trujillo (2006) for a combined sample of 31 face-on galaxies.
Our simulations are in reasonable agreement with the observa-
tions, although they span a smaller part of the parameter space.
The agreement in the narrow distributions in the (Rout /Rin , 	0;in�
	0;out )-plane is quite striking.

We explore the angular momentum redistribution that leads to
the breaks in Figure 16. This plots the distribution of angular mo-
menta in the initial conditions and at the end of the simulation for
runs H1.t12 (with Rbr ’ 5Rd) and H3.t12 (which did not form a
break). In the left panel we see that very little angular momentum
redistribution occurred in run H3.t12. On the other hand, in run
H1.t12, bar formation leads to an excess of low angular momen-
tum particles. At the same time, a second smaller peak forms
at 2:1P jzP 2:6 (see also Pfenniger & Friedli 1991). The right
panel plots the location of particles in this angular momentum
range. We find that the bulk of these particles occur inside the
break radius, supporting the interpretation that breaks occur be-
cause of angular momentum redistribution.

6.2. The Edge-on View

Observationally, breaks have often been sought in edge-on sys-
tems, since this orientation leads to higher surface brightnesses.

Comparing to such data is complicated by the fact that these
projections integrate along the entire line of sight. At very large
radii, the density profile does not evolve and reflects initial con-
ditions. In order to avoid being biased by these effects, we again
limit our double exponential fits to projected radii R0 < 8; how-
ever, we integrate along the entire line of sight since to do oth-
erwise would require an arbitrary cutoff. In order to increase the
signal-to-noise ratio of our measurements, we use all particles re-
gardless of their height above or below the disk midplane. More-
over, in the edge-on case, the break parameters depend on the bar
viewing orientation. Therefore, to compare with simulations, we
consider all orientations of the bar between 0
 � �bar � 90
. The
right panel of Figure 13 shows an example of one of our fitted
edge-on breaks.
The largest observational sample of disk breaks consists of

37 edge-on galaxies studied by Pohlen (2002). We compared our
simulations to these data; the results are shown in Figure 17.
Variations in �bar lead to large variations in the parameters of the
double exponential fit. Nonetheless, these fall within the range
of observed systems. This is particularly striking in the (	0;in�
	0;out, Rout /Rin)-plane, where the observational data span a nar-
row part of the space. Thus, we conclude that simple secular evo-
lution suffices to produce realistic disk breaks.
Figure 17 shows the effect of the line-of-sight integration: runs

L2.t8 (gray asterisks) and L2.t12 (cyan asterisks), which have
very similar intrinsic (i.e., face-on) breaks (Fig. 14), have very
different breaks in the edge-on view. Nevertheless, in both cases
the resulting parameters are in good agreement with those in real
galaxies.

6.3. Unbroken Profiles

Not all disk galaxies exhibit breaks (Weiner et al. 2001;
Pohlen & Trujillo 2006). A successful theory of break formation
must also be able to explain such unbroken profiles, which may
present difficulties for a star formation threshold explanation of

Fig. 14.—Evolution of the break in the face-on surface density. In the top
panel we show Rout (dotted lines), Rin (solid lines), and Rbr (dashed lines). The
black lines show run L2.t8 (Rt ¼ 8Rd), the thick gray lines show run L2.T12
(Rt ¼ 12Rd), and the thin gray lines show run L2 (Rt ¼ 5Rd).

Fig. 15.—Profile break parameters for our simulations seen face-on. The
filled black circles are data from Pohlen et al. (2002), and the filled gray circles
are data from Pohlen & Trujillo (2006). The simulation error bars reflect tem-
poral fluctuations; only simulations that develop breaks are plotted.
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Fig. 16.—Left: Initial (dashed lines) and final (solid lines) distribution of angular momenta in runs H1.t12 (black lines) and H3.t12 (gray lines). Right: Full initial
surface density (black line) and final surface density of particles with 2:1� jz � 2:6 (gray line) in run H1.t12.

Fig. 17.—Profile break parameters for edge-on systems. The filled circles are data from Pohlen (2002). The break parameters are from runs L2.t12 (cyan), L2.t8
(gray), L4.t12 (green), T1.t12 (red ), H2.t12 (blue), and H1.t12 ( yellow), with varying bar position angle also shown.



disk breaks (Schaye 2004; Elmegreen & Hunter 2006). In our
simulations, the formation of a bar is not always accompanied by
the formation of a break in the disk density profile. For example,
run H3.t12 formed a bar, which was not weak, but the profile re-
mained largely exponential, as can be seen in Figure 18. Simi-
larly, model L5.t12, with Q ¼ 1:6, failed to produce a break.

We investigate the dependence of break parameters on the
disk temperature by considering a set of models in which onlyQ
of the initial conditions varies (H1.t12, H2.t12, and H3.t12). We
plot the density profiles in Figure 18. At Q ¼ 1:2, a prominent
break develops in the density profile. At Q ¼ 1:6, a break is still
evident, althoughweaker. ByQ ¼ 2:0 no break forms in the den-
sity profile.

6.4. Interpretation: Bar-Spiral Coupling

The breaks that develop in our simulations are associated with
the angular momentum redistribution induced by the bar. In all
cases the breaks are well outside the bar semimajor axis (always

P3Rd ). The radius at which the breaks develop instead appears to
be set by spirals resonantly coupled to the bar. Resonant cou-
plings between bars and spirals have been described before (e.g.,
Tagger et al. 1987; Sygnet et al. 1988; Masset & Tagger 1997;
Rautiainen & Salo 1999).
Evidence for this hypothesis from run L2.t12 is presented

in Figure 19. The right panel shows the frequency spectrum of
m ¼ 2 perturbations. The bar’s pattern speed is�p ’ 0:29, while
that of the spirals is �p ’ 0:18. For the rotation curve of this
system, this puts the corotation radius of the bar at about the inner
4 : 1 resonance radius of the spirals. The outer Lindblad reso-
nance (OLR) of these spirals is at R ’ 7:5Rd . The break sets in at
R ’ 6Rd , suggesting that it develops interior to the spiral OLR,
at which spiral waves are absorbed. The left panel shows that the
peak amplitude of m ¼ 2 perturbations decreases dramatically
between 7Rd � R � 9Rd , just outside where the break develops
(see Fig. 14). We stress that other spirals with different pattern
speeds can and do propagate to even larger radii. Resonantly
coupled spirals are favored in that they are stronger, so they
transmit more efficiently the angular momentum shed by the bar
during its formation.
For an independent test of this hypothesis we evolved a model

with very different resonance radii: in simulation T1.t12 we
forced a smaller bar with a larger pattern speed by making the
disk more massive in the center (while still exponential in the
outer parts). Assuming a corotation 4 : 1 bar-spiral coupling, this
would bring in the spiral OLR to roughly 4.8Rd ; indeedwe found
a break at Rbr ’ 4:5Rd .
Thus, we propose that profile breaks develop interior to where

the angular momentum shed by the bar and carried away by res-
onantly coupled spirals is deposited.

7. BULGE+DISK DECOMPOSITIONS

We compare the simulations with observations of bulges using
the parameters of one-dimensional bulge+disk decompositions
and Vp /�̄ at a given flattening. Here Vp is the peak line-of-sight
velocity within some same radial range on the disk major axis
and �̄ is the line-of-sight velocity dispersion (averagedwithin the
same radial range).
We decomposed the face-on, azimuthally averaged radial

mass profiles of our simulations into a central Sérsic and an outer

Fig. 18.—Azimuthally averaged surface density in simulations H1.t12,
H2.t12, and H3.t12, in which only Q of the initial conditions is varied: run
H1.t12 with Q ¼ 1:2 (dotted line), run H2.t12 with Q ¼ 1:6 (dashed line), and
run H3.t12 with Q ¼ 2:0 (solid black line). The solid gray line shows the initial
profile of all three simulations.

Fig. 19.—Left: Them ¼ 2 Fourier peak amplitude of the surface density in model L2.t12. Note the abrupt drop in amplitude at 7Rd � R � 9Rd .Right: Frequencies in
run L2.t12. The solid lines show �(R), the frequency of circular rotation. The dashed lines show �� �/2 (lower) and �þ �/2 (upper), while the dotted lines show
�� �/4. These four sets of lines are plotted at t ¼ 0, 1.24, and 4.96 Gyr (end of the simulation). The bar forms at t ’ 0:62 Gyr. Contours of the power spectrum are
overplotted; these show the bar (�p ’ 0:29) and spirals (�p ’ 0:18). This spiral structure appears to be resonantly coupled to the bar; its OLR is close to where the break
develops in the density profile.
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exponential component, which we will refer to as ‘‘bulge’’ and
‘‘disk,’’ respectively. These decompositions are characterized
by five parameters: �0;d , �0;b (the exponential and Sérsic cen-
tral surface density, respectively), Rd; f (final exponential scale
length), Rb; eA (the Sérsic effective radius), and nb (the index of
the Sérsic profile). In our bulge+disk fitting, we computed the fits
at fixed nb and obtained the best fit, including nb, by repeating the
fits for nb in the range 0.1–4 in steps of 0.1, then selecting the fit
with the smallest 
2. We did not distinguish between Freeman
types in our bulge-disk decompositions. In several cases, there-
fore, the profile fits represent a best-fitting average between small
and large radii.

We compare our simulations with observed galaxies in the
dimensionless space spanned by the parameters Rb; eA /Rd; f , nb ,
and B/D, the bulge-to-disk mass ratios for profiles extrapolated
to infinity. The photometric data came from two separate studies.
Our first sample comes from MacArthur et al. (2003), who pre-
sented bulge+disk decompositions for a sample of 121 predom-
inantly late-type galaxies of various inclinations, observed in
B, V, R, and H bands. This study considered only systems with

Freeman type I (i.e., exponential) disk profiles in all bands. As
our systems often exhibited transient type II phases, we also used
the decompositions of Graham (2001, 2003). These were ob-
tained from the diameter-limited sample of 86 low-inclination
disk galaxies of all Hubble types observed in the B, R, I, and K
bands by de Jong & van der Kruit (1994). It is well known that
bulge+disk structural parameters depend on the filter used (e.g.,
Möllenhoff 2004). We compared directly with the data in all pass-
bands; thus, any discrepancies we find between simulations and
observations are not likely to be due to any differences in mass-to-
light ratios of disks and bulges.

Paper I presented the decompositions of the rigid-halo models
where we showed that the models partly overlap with the ob-
servations but are mismatched elsewhere. This mismatch can be
diminished if only those bulges rounder than the disk are consid-
ered, but at the cost of requiring inclinations ik 60



. In Figure 20

we present the face-on bulge+disk decompositions for live-halo
models after bar formation. Several trends are worth noting. Com-
pared with Paper I, the main changes are the generally smaller
nb and B/D values, as well as the smaller discrepancy with

Fig. 20.—Structural parameters of the live-halo runs. In the (B/D, Rb; eA /Rd; f )- and (B/D, nb)-planes, the tracks indicate the evolution of each simulation after the bar
forms. The solid lines refer to runs NC1–NC3 and NG1, while the dashed lines refer to runs NG2–NG5.We do not indicate tracks in the top left panel because these are
dominated by scatter; the different simulations in this panel can be distinguished by comparing the ordering of Rb; eA /Rd; f in the bottom left panel.
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observations, although a small discrepancy is still evident in the
(B/D, nb)-plane. All simulations fall in the same space as ob-
served galaxies in the (B/D, Rb; eA /Rd; f )-plane. In the absence of
gas, the values of B/D tend to their largest values. Moreover, this
quantity increases with time, a result of the continuing loss of
disk angular momentum to the halo, leading to denser disk cen-
ters. Indeed, we find that the density of the inner region increases
through most of the simulation. Introducing 10% gas leads to a
lower B/D when the gas can cool (NG1) because the resulting
central gas concentration leads to a weaker bar. When the gas
is adiabatic (NG2), the central mass that grows is significantly
smaller, the bar amplitude is not much different from the colli-
sionless case, and the B/D ratio is about as large as in the colli-
sionless systems.When star formation is included (NG3), theB/D
ratio is intermediate between NG1 and NG2 and is continually
increasing, changing by almost an order of magnitude as gas is
turned into stars. When gas accounts for 50% of the disk mass,
the B/D ratio is again high when gas is adiabatic (NG4) but re-
mains smaller when it can cool (NG5), in which case a bulge is
built via the clump instability (Noguchi 1999; Immeli et al. 2004).

Some overall trends can be noticed. Generally the systems
evolve parallel to the mean observed correlation between B/D
and Rb; eA /Rd; f largely because nb does not evolve much. In the
(nb, Rb; eA /Rd; f )- and (B/D, nb)-planes, the simulations show a
slight tendency to fall outside the observed range, withB/D evolv-
ing toward values larger than observed. The exception is model
NG3, which evolves parallel to the mean relation between these
two parameters. This model is also comfortably within the range
of observed bulges in the (B/D, Rb; eA /Rd; f )-plane. Thus, dissipa-
tion with star formation is an important ingredient in the secular
assembly of the bulges seen today.

We compared the kinematics of the bulges with observations
in the (V/�, �)-plane at various orientations. Because of the smaller
number of particles compared with the rigid-halo simulations,
we were not able to fit ellipses as in Paper I. We therefore ob-
tained the effective radius of the inclined system through a Sérsic
bulge+exponential disk fit to the mass distribution along the ma-
jor (i.e., inclination) axis. As in Paper I, because our bulges are
poorly fitted by a de Vaucouleurs profile, we measure kinematic
quantities and mean ellipticities at both one-half and one effec-
tive radius and use the differences as an error estimate. Ellip-
ticities were measured from the two-dimensional mass moments
of the projected mass distribution at these two radii, with the
difference between the two giving an error estimate. Each of the
final states of the simulations is viewed at inclination of i ¼ 30




or 60
 and for position angles �b ¼ 0
, 45
, or 90
.
In Figure 21we report the results. The larger scatter in the live-

halo simulations comparedwith the rigid-halo simulations (shown
in Paper I) is mainly due to the lower number of particles and
related discreteness noise of the mass distribution at radii only a
few times larger than the softening length. Overall live and rigid-
halo simulations occupy very similar locations, with many sys-
tems below the locus of oblate isotropic systems flattened by
rotation. Indeed, the simulations include systems significantly
flatter than the observations. These are usually systems in which
the peanut is less pronounced due to weak buckling and the bar
still very strong (a clear example is run NG3), and they are viewed
at small position angles and high inclinations; these objects would
appear markedly barlike and thus probably would not be in-
cluded in surveys of bulges. Anisotropy clearly plays a role in
determining the flattening, which is unsurprising given that al-
most all bars survive. Systems with gas tend to have higher V/�
for a given value of the ellipticity, and the most gas-rich systems
are those that lie closest to the locus of oblate isotropic rotators.

This is expected if the gas falling toward the center sheds a
fraction of its angular momentum to the stars and spins them up.
Run NG3 produces a system with the highest flattening due to a
combination of a strong bar and the suppression of the buckling
of the bar.

7.1. The Pseudobulge Formed by the Clump Instability

The gas sinking to the center of run NG5 was sufficient to de-
stroy the bar. Because we have no star formation in this simu-
lation, we are left with a rotationally supported massive central
gas disk. Star formation would have presumably led to a thin, ro-
tationally supported pseudobulge. The mass of gas within one
Rb; eA ¼ 0:83 kpc (which is measured face-on from only the stel-
lar component) is 1:2 ; 1010 M�. The associated aperture disper-
sion within Rb; eA is � ¼ 141 km s�1. In order for the resulting
bulge to sit on theM.-� relation (Gebhardt et al. 2000; Ferrarese
&Merritt 2000; Tremaine et al. 2002), less than 0.3% of this gas
needs to collapse into a black hole. This shows that disk instabili-
ties are another way, in addition to gas-richmergers (Kazantzidis
et al. 2005), by which a significant reservoir of gas can be built to
feed an already existing central supermassive black hole or per-
haps produce a new one. Since violent gravitational instabilities
in the gas disk need a high gas mass fraction, such a mechanism
might have played a role in the formation of seed black holes at
high redshift.

8. DISCUSSION AND CONCLUSIONS

In this paper we explored the secular evolution of disk struc-
tural parameters using simulations. The initial galaxy model is
similar to a ‘‘Milky Way’’–type galaxy that might form within a
�CDM universe. We have found that bar formation leads to a
significant mass redistribution both in and away from the disk
plane. The evolution of stellar surface density profiles and the
formation of peanut-shaped, dynamically hot stellar structures
in the central regions of the disk are both consequences of bar
formation. Angular momentum redistribution can lead to large

Fig. 21.—Kinematic properties of the live-halo simulations. Open squares
are for collisionless runs, filled circles are for runs with adiabatic gas, filled
triangles are for runs with gas and radiative cooling, and open circles are for the
star formation run. Each run was viewed with different inclinations and position
angles. Error bars are estimated as described in the text.
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changes in density profiles, resulting in profiles that can be rea-
sonably fitted by a central Sérsic and an outer exponential com-
ponent. These can be identified as bulge and disk components,
respectively, although fundamentally they remain bars. On purely
photometric grounds it is difficult to distinguish these profiles
from bulge+disk decompositions for real galaxies; however, ki-
nematically these secular bulges clearly fall below the oblate
isotropic rotators. Real bulges are observed to be at or above this
line.

We have shown that when bars occur in a typical bright spi-
ral galaxy, they are difficult to destroy. The buckling instability,
which is one way a peanut-shaped bulge can form, is suppressed
when gas is highly concentrated in the center of the disk. A pea-
nut can form other than through a major buckling event in such
systems. It is interesting to note that when buckling occurs, it
peaks typically�2 Gyr after the bar forms. It is only at this point
that the peanut-shaped bulge appears.

Our main results can be summarized as follows:

1. While strong buckling always leads to significant vertical
heating, we found that heating does not always result in a peanut
structure.Whenbuckling occurs, the central densitymay increase;
in one simulation this increase more than doubled the central
density. As a consequence, the Sérsic index of the resulting
bulge+disk decomposition increases somewhat.

2. The effect of gas on the buckling instability depends on the
gas physics. When the gas evolution included radiative cooling,
buckling was not possible and no peanuts formed. When the gas
is adiabatic, buckling can occur and peanuts form. This differ-
ence might arise because the higher central gas concentration
suppresses bending modes, as suggested by the correlation be-
tween strength of buckling and central gas mass concentration.
However, a clear test is needed to discriminate between this sce-
nario and one in which buckling does not occur because the
energy in the modes is dissipated by radiative cooling. Peanuts
can still be recognized by the negative minimum in the s4 crite-
rion (Paper II ) even when gas is present because it sinks to small
radii, with the peanut at larger radii.

3. We found no case in which buckling destroyed a bar. In
Paper I we demonstrated this with the rigid-halo simulations. In
this paper we showed that this result continues to hold when a
live halo is included. The most damaging buckling events we
saw were induced in the rigid-halo simulations by slowing bars,
but even in those cases a bar survived. Sometimes, however, the
surviving bar is weak and may be better described as SAB rather
than SB.

4. Density profiles may evolve substantially under the action
of a bar. Reasonable bulge+disk decompositions can be fitted to
the resulting profiles. When comparing the fits with observed
galaxies, purely collisionless secular evolution gives rise to sys-
tems marginally consistent with bulges in nature. The presence
of a modest (10%) amount of gas produces systems that are bet-
ter able to match observations. Star formation helps further and
leads to an evolution of structural parameters parallel to their
locus for observed galaxies. Secular evolution generally gives
rise to nearly exponential inner profiles. Kinematically, however,
the central bulgelike components of our simulations clearly fall
below the locus of oblate isotropic rotators (at or above which
real bulges occur in nature), reflecting the fact that they are still,
fundamentally, bars.

5. The amount of evolution of a density profile following bar
formation depends sensitively on the Toomre Q of the initial
disk. When this is small, the inner disk needs to shed a large
amount of angular momentum to form a bar and the central den-

sity steepens considerably. When the disk is hotter, the density
change is smaller. As a result, the exponential scale length of the
disk outside the bar region depends on the initial disk kinematics.
Thus, a distribution of dark matter halo specific angular momenta
cannot trivially be related to a distribution of disk scale lengths,
as is often assumed.

6. Angular momentum redistribution also leads to realistic
breaks in the surface density of disks. The radius at which breaks
occur is interior to the outer Lindblad resonance of spirals res-
onantly coupled to the bar. When the initial disk is hot, little
angular momentum redistribution occurs and no density breaks
occur; thus, secular evolution can also account for galaxies that
do not exhibit any breaks. The breaks that result in these simu-
lations are in very good agreement with observations, includ-
ing not only the break radii in units of inner disk scale length but
also outer scale lengths and the difference between central sur-
face brightnesses of the two exponentials. On the other hand, we
cannot exclude that angular momentum redistribution driven by
other than bars does not account for some ormost of the observed
breaks. In particular, spirals excited by interactions may consti-
tute another channel bywhich such breaksmay form; the presence
of breaks in unbarred galaxies may require such a mechanism.
Since our disk break formation simulations were all collisionless,
we cannot address whether star formation thresholds play any
role in break formation, but two results here suggest that these
may not play a prominent role. First, we are able to produce
disks without truncations, which models invoking star formation
thresholds may have difficulty in producing. Secondly, it is clear
that the breaks that do form in our simulations are quite insen-
sitive to extent of the initial disks. The ease with which angular
momentum redistribution gives rise to realistic profile breaks,
together with the ability to produce also profiles without breaks,
provides strong incentives for exploring such models further.
Moreover, the type of angular momentum exchange we are ad-
vocating here as leading to breaks need not be necessarily driven
by bars, and external perturbations can also play a role. In that case,
depending on the frequency of the perturbation, antitruncations
(Erwin et al. 2005) may also be possible in a unified picture.

The fraction of disks with bars is�30% at both low (Sellwood
&Wilkinson 1993) and high (Jogee et al. 2004) redshift, and this
increases to �70% at low redshift when measured via dust-
penetrating infrared observations (Knapen 1999; Eskridge et al.
2000). Since, as we show, bars are long lived, we are forced to the
conclusion that disk galaxies know at an early epoch whether or
not they will form a bar and there is simply little room for con-
tinued bar formation as a function of cosmic time. Thus, secular
evolution has had a long time to act on galaxies.

The results of this paper demonstrate a strong coupling be-
tween the properties and evolution of disk galaxies and their as-
sociated inner and outer morphological and structural parameters.
In contrast, semianalytic models of disk structural parameters
that invoke specific angular momentum conservation miss the
important effects of bar formation on disk structure. As noted in
Paper I, a more nuanced analysis that takes into account secular
evolution may help to alleviate discrepancies between predic-
tions for disk galaxy structure from cosmological models (e.g.,
Mo et al. 1998) and observations (de Jong & Lacey 2000).

Nonetheless, secular evolution cannot account for all discrep-
ancies between theory and observation. An example is the diffi-
culty cosmological models have in forming bulgeless disks as
extended as those observed (D’Onghia & Burkert 2004). The
N-body simulations of D’Onghia & Burkert (2004) showed
that halos with a quiet merging history since z ¼ 3 (which are
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expected to lead to bulgeless disks, but see also Springel &
Hernquist 2005) have a median k ’ 0:023 with a scatter �ln k ’
0:3. On the other hand, van den Bosch et al. (2001) measured
their observedmean at k ’ 0:067. Thus, themean of k in the cos-
mological simulations is more than 3 � smaller than observed.
Our simulations indicate that the fraction of galaxies that form
pure exponential disks must be higher (and extends to higher
mass galaxies such as our own Milky Way) before secular evo-
lution turns them into more disk+bulge-like systems. However,
even if all of these systems would have lower k-values, the dis-
tribution of k-values of quiet merger halos makes it unlikely that
secular evolution can account for the discrepancy between pre-
dictions and observations. An interesting test of �CDM will be

whether enough halos with quiet merger histories form to ac-
count for a higher fraction of bulgeless galaxies.

Discussions with Stéphane Courteau, Aaron Dutton, Peter
Erwin, Lauren MacArthur, Michael Pohlen, Juntai Shen, and
especially Frank van den Bosch were useful. Thanks also to
Michael Pohlen for sharing his data with us in advance of publi-
cation. T. Q. and V. P. D. acknowledge partial support fromNSF
ITR grant PHY-0205413.We thank the anonymous referee for a
very careful reading and a detailed report that helped improve
this paper.

REFERENCES

Abadi, M. G., Navarro, J. F., Steinmetz, M., & Eke, V. R. 2003, ApJ, 591, 499
Andredakis, Y. C., & Sanders, R. H. 1994, MNRAS, 267, 283
Araki, S. 1985, Ph.D. thesis, MIT
Athanassoula, E., & Bureau, M. 1999, ApJ, 522, 699
Balsara, D. S. 1995, J. Comput. Phys., 121, 357
Bate, M. R., & Burkert, A. 1997, MNRAS, 288, 1060
Baugh, C. M., Cole, S., & Frenk, C. S. 1996, MNRAS, 283, 1361
Benson, A. J., Bower, R. G., Frenk, C. S., Lacey, C. G., Baugh, C. M., & Cole, S.
2003, ApJ, 599, 38

Berentzen, I., Heller, C. H., Shlosman, I., & Fricke, K. J. 1998, MNRAS, 300, 49
Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton: Princeton
Univ. Press)

Birnboim, Y., & Dekel, A. 2003, MNRAS, 345, 349
Bournaud, F., Combes, F., & Semelin, B. 2005, MNRAS, 364, L18
Bullock, J. S., Dekel, A., Kolatt, T. S., Kravtsov, A. V., Klypin, A. A., Porciani, C.,
& Primack, J. R. 2001, ApJ, 555, 240

Bureau, M., & Athanassoula, E. 1999, ApJ, 522, 686
Bureau, M., & Freeman, K. C. 1999, AJ, 118, 126
Carollo, C. M. 1999, ApJ, 523, 566
Carollo, C. M., Stiavelli, M., de Zeeuw, P. T., & Mack, J. 1997, AJ, 114, 2366
Carollo, C. M., Stiavelli, M., de Zeeuw, P. T., Seigar, M., & Dejonghe, H. 2001,
ApJ, 546, 216

Carollo, C. M., Stiavelli, M., & Mack, J. 1998, AJ, 116, 68
Carollo, C. M., Stiavelli, M., Seigar, M., de Zeeuw, P. T., & Dejonghe, H. 2002,
AJ, 123, 159

Cole, S., Aragon-Salamanca, A., Frenk, C. S., Navarro, J. F., & Zepf, S. E.
1994, MNRAS, 271, 781

Cole, S., Lacey, C. G., Baugh, C. M., & Frenk, C. S. 2000, MNRAS, 319, 168
Combes, F., Debbasch, F., Friedli, D., & Pfenniger, D. 1990, A&A, 233, 82
Combes, F., & Sanders, R. H. 1981, A&A, 96, 164
Courteau, S., de Jong, R. S., & Broeils, A. H. 1996, ApJ, 457, L73
Dalcanton, J. J., Spergel, D. N., & Summers, F. J. 1997, ApJ, 482, 659
Debattista, V. P., Carollo, C. M., Mayer, L., & Moore, B. 2004, ApJ, 604, L93
(Paper I )

———. 2005, ApJ, 628, 678 (Paper II )
Debattista, V. P., & Sellwood, J. A. 1998, ApJ, 493, L5
———. 2000, ApJ, 543, 704
de Grijs, R., Kregel, M., & Wesson, K. H. 2001, MNRAS, 324, 1074
de Jong, R. S. 1996, A&A, 313, 45
de Jong, R. S., & Lacey, C. 2000, ApJ, 545, 781
de Jong, R. S., & van der Kruit, P. C. 1994, A&AS, 106, 451
D’Onghia, E., & Burkert, A. 2004, ApJ, 612, L13
Elmegreen, B. G., & Hunter, D. A. 2006, ApJ, 636, 712
Erwin, P., Beckman, J. E., & Pohlen, M. 2005, ApJ, 626, L81
Eskridge, P. B., et al. 2000, AJ, 119, 536
Fall, S. M., & Efstathiou, G. 1980, MNRAS, 193, 189
Ferguson, A. M. N., Irwin, M. J., Ibata, R. A., Lewis, G. F., & Tanvir, N. R.
2002, AJ, 124, 1452

Ferrarese, L., & Merritt, D. 2000, ApJ, 539, L9
Firmani, C., & Avila-Reese, V. 2000, MNRAS, 315, 457
Gardner, J. P. 2001, ApJ, 557, 616
Gebhardt, K., et al. 2000, ApJ, 539, L13
Gerhard, O. E. 1993, MNRAS, 265, 213
Governato, F., et al. 2004, ApJ, 607, 688
Graham, A. W. 2001, AJ, 121, 820
———. 2003, AJ, 125, 3398
Hatton, S., Devriendt, J. E. G., Ninin, S., Bouchet, F. R., Guiderdoni, B., &
Vibert, D. 2003, MNRAS, 343, 75

Helmi, A., White, S. D. M., de Zeeuw, P. T., & Zhao, H.-S. 1999, Nature, 402, 53

Hernquist, L. 1993, ApJS, 86, 389
Hohl, F. 1971, ApJ, 168, 343
Ibata, R. A., Gilmore, G., & Irwin, M. J. 1994, Nature, 370, 194
Immeli, A., Samland, M., Gerhard, O., & Westera, P. 2004, A&A, 413, 547
Jimenez, R., Verde, L., & Oh, S. P. 2003, MNRAS, 339, 243
Jog, C., & Solomon, P. M. 1991, in IAU Symp. 146, Dynamics of Galaxies and
Their Molecular Cloud Distributions, ed. F. Combes & F. Casoli (Dordrecht:
Kluwer), 277

Jogee, S., et al. 2004, ApJ, 615, L105
Katz, N. 1992, ApJ, 391, 502
Katz, N., & Gunn, J. E. 1991, ApJ, 377, 365
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Pohlen, M., Dettmar, R.-J., Lütticke, R., & Aronica, G. 2002, A&A, 392, 807
Pohlen, M., & Trujillo, I. 2006, A&A, submitted (astro-ph /0603682)
Quillen, A. C. 2002, AJ, 124, 722
Rafikov, R. R. 2001, MNRAS, 323, 445
Raha, N. 1992, Ph.D. thesis, Univ. Manchester
Raha, N., Sellwood, J. A., James, R. A., & Kahn, F. D. 1991, Nature, 352, 411
Rautiainen, P., & Salo, H. 1999, A&A, 348, 737
Schaye, J. 2004, ApJ, 609, 667
Sellwood, J. A., & Debattista, V. P. 2006, ApJ, 639, 868
Sellwood, J. A., & Valluri, M. 1997, MNRAS, 287, 124
Sellwood, J. A., & Wilkinson. A. 1993, Rep. Prog. Phys., 56, 173
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Sommer-Larsen, J., Götz, M., & Portinari, L. 2003, ApJ, 596, 47
Sotnikova, N. Ya., & Rodionov, S. A. 2003, Astron. Lett., 29, 321
———. 2005, Astron. Lett., 31, 15
Spergel, D. N., et al. 2003, ApJS, 148, 175
Springel, V., & Hernquist, L. 2005, ApJ, 622, L9
Springel, V., & White, S. D. M. 1999, MNRAS, 307, 162
Stadel, J. G. 2001, Ph.D. thesis, Univ. Washington
Steinmetz, M., & Navarro, J. F. 2002, NewA, 7, 155
Stinson, G., Seth, A., Katz, N., Wadsley, J., Governato, F., & Quinn, T. 2006,
MNRAS, submitted (astro-ph /0602350)

Sygnet, J. F., Tagger, M., Athanassoula, E., & Pellat, R. 1988, MNRAS, 232,
733

Tagger, M., Sygnet, J. F., Athanassoula, E., & Pellat, R. 1987, ApJ, 318, L43
Terndrup, D. M., Davies, R., L., Frogel, J. A., DePoy, D. L., & Wells, L. A.
1994, ApJ, 432, 518

Toomre, A. 1964, ApJ, 139, 1217
———. 1981, in Structure and Evolution of Normal Galaxies, ed. S. M. Fall &
D. Lynden-Bell (Cambridge: Cambridge Univ. Press), 111

Tremaine, S., et al. 2002, ApJ, 574, 740
Trujillo, I., & Pohlen, M. 2005, ApJ, 630, L17
van den Bosch, F. C. 1998, ApJ, 507, 601
———. 2000, ApJ, 530, 177
———. 2001, MNRAS, 327, 1334
———. 2002, MNRAS, 332, 456
van den Bosch, F. C., Abel, T., Croft, R. A. C., Hernquist, L., & White, S. D. M.
2002, ApJ, 576, 21

van den Bosch, F. C., Burkert, A., & Swater, R. A. 2001, MNRAS, 326, 1205
van der Kruit, P. C. 1979, A&AS, 38, 15
van der Kruit, P. C., & Searle, L. 1981a, A&A, 95, 105
———. 1981b, A&A, 95, 116
van der Marel, R. P., & Franx, M. 1993, ApJ, 407, 525
Wadsley, J. W., Stadel, J., & Quinn, T. 2004, NewA, 9, 137
Weinberg, M. D. 1985, MNRAS, 213, 451
Weiner, B. J., Williams, T. B., van Gorkom, J. H., & Sellwood, J. A. 2001, ApJ,
546, 916

White, S. D. M., & Rees, M. J. 1978, MNRAS, 183, 341

SECULAR EVOLUTION OF DISK STRUCTURAL PARAMETERS 227No. 1, 2006


