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ABSTRACT

At the intersection of galactic dynamics, evolution, and global structure, issues such as the relation between bars
and spirals and the persistence of spiral patterns can be addressed through the characterization of the angular speeds
of the patterns and their possible radial variation. The radial Tremaine-Weinberg (TWR) method, a generalized version
of the Tremaine-Weinbergmethod for observationally determining a single, constant pattern speed, allows the pattern
speed to vary arbitrarily with radius. Here we perform tests of the TWR method with regularization on several sim-
ulated galaxy data sets. The regularization is employed as a means of smoothing intrinsically noisy solutions, as well
as for testing model solutions of different radial dependence (e.g., constant, linear, or quadratic). We test these facil-
ities in studies of individual simulations and demonstrate successful measurement of both bar and spiral pattern speeds
in a single disk, secondary bar pattern speeds, and spiral winding (in the first application of a TWcalculation to a spiral
simulation). We also explore the major sources of error in the calculation and find uncertainty in the major-axis posi-
tion angle most dominant. In all cases, the method is able to extract pattern speed solutions where discernible patterns
exist to within 20% of the known values, suggesting that the TWR method should be a valuable tool in the area
of galactic dynamics. For utility, we also discuss the caveats in, and compile a prescription for, applications to real
galaxies.

Subject headinggs: galaxies: kinematics and dynamics — galaxies: spiral — galaxies: structure —
methods: numerical

1. INTRODUCTION

One of the prime unresolved issues in the dynamics and evolu-
tion of galaxy disks remains the origin and evolution of large-scale
bar and spiral structure. Although the persistence of grand-design
spirals has been tied observationally to the presence of bars or
companions (Kormendy & Norman 1979), virtually nothing is
known about the actual lifetimes of spiral patterns. In addition,
despite indications that the relation between bar and spiral pat-
tern speeds (which Sellwood & Sparke [1988] first argued might
not be equal) may be important for understanding the role of bars
in angular momentum transfer during secular disk evolution (e.g.,
Debattista & Sellwood 1998, 2000), there are as yet unanswered
questions about the connections betweenmultiple patterns in dif-
ferent radial zones.Whilemode coupling between patterns, which
allows efficient outward angular momentum transfer in disks
(Sygnet et al. 1988; Masset & Tagger 1997), seems a most prom-
ising link, in two-dimensional (2D) N-body simulations with a
dissipative gas componentRautiainen&Salo (1999) find evidence
for spiral structure in the absence of a bar, bar-spiral mode cou-
pling, spiral-spiral mode coupling, and multiple pattern speeds
without mode coupling.

Clearly, to address questions about the persistence of spiral
patterns and the relation between bars and spirals requires not
only determination of the pattern speed but how it varies with
radius; only with accurate measurement of bar and spiral or inner
and outer spiral pattern speeds in the same galaxy canwe confirm

whether spiral structure is steady or winding, whether bars and
spiral pattern speeds are equal or unrelated, whether mode cou-
pling exists, and the domain and number of patterns that can be
sustained in a disk.

Because they are not directly accessible through observation,
pattern speeds are often determined with indirect means such as
the identification of predicted behavior at resonance radii (e.g.,
Elmegreen et al. 1989, 1996) or kinematic and morphological
comparisons of simulated and observed structure (e.g., Rautiainen
& Salo 2005; Garcia-Burillo et al. 1993). It is also clearly desir-
able to employ methods for estimating pattern speeds that do not
rely on theoretical models or simulation. Many other pattern
speed determinations have therefore centered on the use of the
model-independentmethod of Tremaine&Weinberg (1984; here-
after TW), which presents a rigorous derivation for the pattern
speed �p based on the requirement of continuity using observa-
tionally accessible quantities. The determination of �p involves
surface density–weighted position and velocity line integrals par-
allel to the galaxy major axis under several essential assumptions.
Specifically, the method requires that the disk of the galaxy is flat
(unwarped) and contains a single, well-defined rigidly rotating
pattern; that the surface density of a kinematic tracer of a disk
component,whichmust obey continuity, becomes negligibly small
at some radius and all azimuths within the map boundary (thereby
critically yielding converged integrals); and that the relation be-
tween the emission from this component and its surface density is
linear, or if not, suspected deviations from linearity can bemodeled.
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In that information from all sampled radii is associated with a
single, constant pattern speed, the TW calculation poses a chal-
lenge for extracting multiple distinct or radially varying pattern
speeds. Nonaxisymmetric structures beyond a dominant pattern
such as a bar in the disk of a galaxy will interfere with the mea-
surement of �p of the bar; when a nonaxisymmetric disk can be
decomposed into two components with different pattern speeds,
then the TW estimate is a luminosity- and asymmetry-weighted
average of the two patterns (Debattista et al. 2002b). The TWes-
timate for the secondary pattern speed in the inner disk of NGC
6946 observed in H�, for example, is estimated to be limited to
an uncertainty of asmuch as 50% given the primary pattern’s con-
tribution to the TW integrals (Fathi et al. 2007).

Such issues notwithstanding, there have been several recent
adaptations of the TWmethod to positive effect. Applications of
the TWmethod to SB0 galaxies using stellar light as a tracer ex-
tend the limits of integration in the TW calculation to just past the
end of the bar in order to minimize contributions to the TW in-
tegrals from nonaxisymmetric (and several magnitudes dimmer)
features beyond the bar; in such cases, integrating past the struc-
ture of interest is found to be sufficient for achieving converged
integrals. The bar pattern speeds in NGC 7079 (Debattista &
Williams 2004) and NGC 1023 (Debattista et al. 2002a), for ex-
ample, have both been successfully measured in this way.

When there exists more than one pattern in distinct radial
zones, however, arguments about the convergence of the TW in-
tegrals are less straightforward. Tomeasure the secondary bar pat-
tern speed in NGC 2950, Corsini et al. (2003) and Maciejewski
(2006) explore decoupling the inner secondary and outer primary
bar pattern speeds by associating each component with unique
surface brightness contributions in the TW calculation. The TW
integrals are modified by the presence of the inner pattern based
on an assumption about how and where the two patterns decouple
(to first order). This analysis has confirmed the existence of, if
not measured, a unique secondary bar pattern speed possibly in-
dicating counterrotation with respect to the primary bar.

At their best, improving the accuracy of pattern speed esti-
mates to about 20% (Gerssen & Debattista 2007), these kinds of
adaptations of the TWmethod for measurement of single or mul-
tiple patterns still require assumptions about bar extent based on
morphological or kinematic signatures. To separate the observed
surface brightness in NGC 2950 into secondary and primary bar
components, Maciejewski (2006) must assume that the patterns
indeed decouple at the inner bar end, or that the outer pattern is
axially symmetric at least within the inner pattern’s extent. There,
the transition between the two is inferred from the location of a
plateau in the TW surface brightness–weighted position integral
as the limits of integration are extended from zero. Perhaps more
critically, as investigated in x 4.2, the direct association of bar
length measured in this manner (or perhaps others) with pattern
extent may introduce error into TW calculations.

Furthermore, adaptations of the TW method based on this
type of identification are likely to be inapplicable for spiral pat-
tern estimation. In spiral galaxies, not only can identifying transi-
tions between patterns be less clear, but nonaxisymmetricmotions
are significantly smaller (e.g., Roberts & Stewart 1987) than in
bars (at least those typically analyzed with the TW method). In-
deed, the TW method has yet to be tested on a simulated spiral.

A recent modification to the TW calculation (Merrifield et al.
2006, hereafter MRM06) in which�p is allowed radial variation
promises to be an invaluable resource for tests of long-lived den-
sity wave theories and for understanding the connection, if any,
between bar and spiral pattern speeds. Like the TW method, the
so-called radial TW (TWR) method uses measurements of ob-

servables to extract radially varying pattern speeds. As first ap-
plied using the BIMA Survey of Nearby Galaxies CO observa-
tions of the grand-design Sb galaxy NGC 1068 (MRM06), the
TWRmethod returned a spiral pattern speed solution that declines
with radius, allowing a winding time for the pattern to be esti-
mated (e.g., MRM06).
As described in MRM06, the nature of the discretized cal-

culation presents numerical solutions that are highly susceptible
to fluctuations as a result of compounded noise in the data. In this
paper (x 2.2) we develop the TWR method with regularization
as a means of smoothing intrinsically noisy solutions, as well as
testing model solutions of different radial dependence (described
in x 2.3). These and other commendations notwithstanding, with
regularization one may risk introducing an unrealistic prejudice
to TWR solutions. In x 3.1 we address a means of identifying
when this is likely to occur, and in x 3.2 we describe a scheme for
minimizing such regularization-induced bias.
Using evidence that arises from these considerations, as well

as other a priori information, theoretically and observationally
motivated models for �p(r) can be developed that constrain the
number and extent of patterns present in a disk. Once solutions
for these models are calculated, the goodness of each must be
assessed in order to identify the best-fit solution. In x 3.3 we out-
line the criteria with which the models are judged and describe
our concept of error evaluation in the final solutions.
Beginning in x 4.1, we analyze three simulated galaxies with

known pattern speeds (a barred spiral, a slowly winding spiral,
and a double-barred spiral, marking the first application of the
TW method to simulated spiral patterns) in order to develop a
general stratagem for application to real galaxies. As applied to
these simulations, we find that the TWRmethod is able to extract
multiple pattern speeds with accuracies on the order of (and in
some cases better than) the traditional TWmethod.With the barred
spiral simulation in x 4.2 we show that TWR bar pattern speed
measurement presents an improvement over traditional TW bar
estimates, particularly when there is evidence of a significant
contribution from the spiral pattern to the TW integrals. We find
that the regularized TWR method can recover information from
both patterns effectively by identifying and treating the bar-to-
spiral transition radius (which the TW values themselves may
not indicate) as a free parameter in the calculation. In x 4.2.1 we
analyze the results of the method in detail, particularly with re-
gard to morphological limitations. We compare our TWR results
with TW estimates in x 4.2.2 and examine the influence of sys-
tematic errors due to the assumed disk position angle and incli-
nation (shown to be crucial for TWestimates in Debattista 2003)
on both in x 4.2.3. We also explore the reliability of a fixed pa-
rameterization for the bar-to-spiral transition radius (x 4.2.4).
In the last third of the paper, we investigate the prospects for

extracting spiral pattern speed solutions that are winding in na-
ture (x 4.3), marking the first application of the TW method to
a spiral simulation, and in x 4.4 we address the use of the TWR
method for the purposes of parameterizing an independently ro-
tating nuclear bar in a double-barred simulation. There, the tech-
niques we employ for decoupling and extracting measurements
of the pattern speeds of both the primary and secondary bar com-
ponents may present an interesting corollary to recent attempts
with the TWmethod to measure secondary bar pattern speeds in
the presence of a strong primary bar pattern. We note here that
the TWR method is a generalized version of the procedure used
on NGC 2950 (see Corsini et al. 2003; Maciejewski 2006); sep-
arating the surface brightness into two components can be thought
of as the coarsest version of the discretization that is the backbone
of numerical TWR solutions.
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Based on our experience with these simulations, we conclude
with comments on the applicability of the method to observa-
tions of real galaxies in x 5.1, where we also outline a general
prescription for using the TWR calculation with regularization.

2. THE TWR METHOD WITH REGULARIZATION

2.1. The Radial Tremaine-Weinberg Method

By proceeding under the aforementioned assumptions of
Tremaine &Weinberg (1984), but allowing that�p may possess
spatial variation in the radial directionwhereby the surface density
of the chosen tracer can be written �(x; y; t)¼�(r; ���p(r)t),
with appropriate mathematical generalizations, the derivation and
measurement of the pattern speed �p(r) can be made from ob-
servable intensities and kinematics of a chosen tracer.

Following the derivation given in MRM06, integrating the
continuity equation obeyed by the tracer [with the replacement
@�/@t ¼ ��p(r)@�/@�]

��p(r)
@�

@�
þ @�vx

@x
þ @�vy

@y
¼ 0 ð1Þ

over x and y (thereby eliminating the unobservable vx and the spa-
tial derivative @ /@y), and changing from Cartesian to polar coor-
dinates yields

Z 1

r¼y

Z �� arcsin ( y=r)

�¼ arcsin ( y=r)

�p(r)
@�

@�
r dr d� þ

Z 1

�1
�vy dx ¼ 0: ð2Þ

A final integration with respect to � results in a Volterra integral
equation of the first kind for �p(r):

Z 1

r¼y

� x0; yð Þ � � �x0; yð Þ½ �rf g�p rð Þ dr ¼
Z 1

�1
�vy dx; ð3Þ

where x0(r; y) ¼ (r2� y2)1
=2.

Note that with constant �p in equation (3), we arrive at the
regular TW result

�p

Z 1

�1
�x dx ¼

Z 1

�1
�vy dx; ð4Þ

which, with normalization by
R
� dx (e.g., Merrifield & Kuijken

1995), leads to

�p ¼
vh i
xh i ; ð5Þ

where hvi ¼
R
�vy dx/

R
� dx and hxi ¼

R
�x dx/

R
� dx.

For a galaxy projected onto the sky plane with inclination �
(so as to distinguish from index i ), both the kernel on the left and
the integral on the right of equation (3) are observationally deter-
mined quantities with x ¼ xobs, y ¼ yobs /cos �, and vy ¼ vobs /
sin �, where xobs and yobs are the coordinates in the plane of the
sky along the major and minor axes, respectively, and vobs is the
observed line-of-sight velocity. Solutions can be extracted numer-
ically by replacing the integral on the left with a discrete quadra-
ture for different values of y¼ yi and r¼ rj (see Fig. 1), whereby
equation (3) is converted to

�rj>yiK yi; rj
� �

�p rj
� �

¼ b yið Þ ð6Þ

or to a matrix equation of the form

Kij�j ¼ bi; ð7Þ

with K an upper triangular N ;N square matrix. Note that nu-
merical quadratures on either side of the galaxy ( y < 0 or y > 0)
occur independently, providing two measures of �p(r). Further-
more, as governed by the information available, the slices that
delimit the quadrature on a single side need not be uniformly
spaced. In this case, solutions inherit a variable bin width �r.
Also, the calculation allows for no azimuthal dependence for the
pattern speed, which we assume throughout.

The size of K depends on the desired coarseness or fineness
of the quadrature; the separation between slices at positions yi
( limited by either the resolution or the sampling of the data)
translates into a radial bin width (modulo cos �) via equation (7).
The quadrature, perhaps more critically, depends on the limits of
integration in equation (3). These limits�Xmax should be chosen
based on where the integrals have converged. While in the case
of a single bar pattern integrating past the structure of interest
is often suitable, as shown in Zimmer et al. (2004, Figs. 9–11),
in the presence of strong, extended asymmetry TW values are
highly dependent on the extent of integration along each slice i.
In cases where multiple patterns exist in a single disk, then, it is
equally favorable (and hopefully sufficient) to extend all inte-
grals to the edge of the surface brightness distribution.

Meeting the requirement of integral convergence in this man-
ner as applied to the TWR calculation determines the location of
the last radial bin jmax associated with elements Kijmax

along each
slice. For a given radial bin width, with the requirement that jmax

equals N we are presented with the size of K, as well as the
outermost slice position, since jmax must also equal imax. One
should check to see that KNN , the last entry in K associated with

Fig. 1.—Illustration of a y > 0 quadrature for a galaxy viewed from the
negative z side with a tilt around the y-axis by � ¼ 45

�
. The horizontal lines, or

slices, at positions yi are spaced at �y ¼ 1:54, or �yobs ¼ 1:09, and represent
integration between the limits�(R2

0 þ y2i )
1=2, where R0 ¼ 10:8 is the maximum

radial extent of the quadrature. Each slice is carved into elements of width �r
whereby all the elements with the same shade of gray represent a single radial
bin rj.
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the outermost slice, is associated with a fully converged
R
�x dx

(which achieves convergence at least by the map boundary).
Since K is an upper triangular matrix, the �j can be solved for

via simple back substitution. In this way, solutions are generated
from the outermost to the innermost radius (from light gray to
black in Fig. 1) according to

�k ¼
bi �

PN
j>k Kij�j

Kkk

; ð8Þ

with k � i (from eq. [7]). Such solutions, however, are especially
susceptible to wildly oscillatory behavior as errors from large
radii propagate inward. These compounded errors arise from un-
certainties in the velocities and intensities (which get translated
into the Kij) and can be particularly severe since the outermost
bins often cover the lowest signal-to-noise ratio regions in the
data. The errors thus introduced can be systematic.

Figure 2 shows an example of (unregularized) TWR solutions
for two different binnings using data from the barred spiral sim-
ulation of x 4.2. By increasing the bin width, the largest oscilla-
tions are reduced, but (as will become clearer) even tripling the
bin width will not necessarily limit the propagation of noise to
the level required for the extraction of realistic solutions. (A more
thorough discussion of the implications for TWR solutions is de-
ferred until the beginning of x 4.2.)

Although the initial application of the TWR method on a real
galaxy, namely, NGC 1068 (MRM06), showed little of the oscil-
latory behavior common to noisy, discretized Volterra-type solu-
tions (outside r � 1:5 kpc, anyway), the solutions were generated
over relatively few bins (only five at most, over the region r ¼
1:5 2:8 kpc). In general, while large bin widths can often min-
imize the propagation of noise in the calculation, they can be ex-
pected to compromise solutions, as is discussed in the sections to
follow; naturally, the smaller the quadrature element, the more
accurately the true radial variation of the pattern speed can be as-
certained. This is particularly critical as applied to disks sustain-
ing multiple patterns where, as described later, a certain degree of
radial precision is required for accurate separation of the pattern
speeds.

Barring a large, limiting resolution, one should expect to be
able to perform a sufficiently smooth quadraturewherein the num-
ber of elements in K becomes large. Since more elements in K
(and more bins over which to generate solutions) result in intrin-

sically noisy behavior, an effect most pronounced in the inner-
most bins, gaining a finer, more accurate quadrature often means
forfeiting control of the solution. By combining regulariza-
tion with the TWR calculation to force a smooth solution, how-
ever, one can counter this effect while maintaining the required
precision.
Regularization also serves to alleviate the impact of nonglobal

features that are most likely not included in the overall pattern
(and which can singularly introduce large errors into the inte-
grals). Since rapid fluctuations in�p(r) are penalized, discrepant
points need not be avoided or ignored (as demanded in perform-
ing the TWR calculation on NGC 1068 in MRM06). While one
may also use the alternative, which would be to fit models of �p

directly to equation (7) and perform a grid search to find the best
model form and coefficients, we pursue regularization here, its
speed making it preferred.

2.2. Regularization

Our procedure entails the following. As a modification to the
�2 estimator minimized by solutions �j of equation (7), namely,

Kij�j � bi
�� ��2

�2
i

; ð9Þ

with implicit sum over i (and j ) and errors �i representing the
measurement error of the ith data point bi, we introduce a reg-
ularizing operator, or smoothing functional S, containing a priori
information in the manner of Tikhonov-Miller regularization
(Tikhonov & Arsenin 1997; Miller 1970) in which (in matrix
form) solutions 6 minimize

K̄ =6� b̄
�� ��2þk6 =S =6: ð10Þ

Here the elements of K̄ and b̄ are Kij /�i and bi /�i, respectively,
and the role of k, controlling the relative amount of �2 minimiza-
tion on the left to entropy maximization on the right, is explicit.
Reduced to a linear set of normal equations, this minimization

returns smoothed solutions according to a modified version of
equation (7):

K̄T = K̄ þ kS
� �

= 6 ¼ K̄T = b̄: ð11Þ

Fig. 2.—Plots of (unregularized) TWR solutions for two different binnings of data from the barred spiral simulation in x 4.2 with SA ¼ �45� (see x 4.1 for orienta-
tion convention). The left (right) panel shows the solution generated using �r ¼ 0:3 (0.9) bins.
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Note that the regularizing functional, not necessarily upper trian-
gular, introduces an anticipatory quality to solutions�j whereby
all bins at the same radius are coupled. Furthermore, solving for
components �j no longer only involves a procedure like back
substitution, but requires rather an L-U decomposition (for in-
stance) as well.

2.3. The Smoothing Operator

The real power in applying regularization to TWR calcula-
tions is in the freedom to choose how the smoothness of solu-
tions is achieved. For the purposes of distinguishing between
different possible radial dependencies for �(r), we choose S to
reflect a priori assumptions based on simple expectations from
theory and observation. Model solutions, then, each incorporat-
ing its own S, represent smoothed, testable realizations of the
pattern speed. These we restrict to simple forms in order to min-
imize the additional amount of information to be extracted from
the data relative to the traditional TW method.

For polynomial solutions, we consider only constant, linear,
and quadratic radial dependence. The elements of the smoothing
S are associated with the minimization of the nth derivative of
�(r) for each polynomial solution of order n. For instance, for
linear solutions this entails minimizing

6 =S =6 ¼
XN�2

n¼1

��n þ 2�nþ1 � �nþ2j j2; ð12Þ

whereupon

S ¼

1 �2 1 0 0 0 0 : : : 0

�2 5 �4 1 0 0 0 : : : 0

1 �4 6 �4 1 0 0 : : : 0

..

. . .
. ..

.

0 : : : 0 1 �4 6 �4 1 0

0 : : : 0 0 1 �4 6 �4 1

0 : : : 0 0 0 1 �4 5 �2

0 : : : 0 0 0 0 1 �2 1

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

:

ð13Þ

One may also choose a form for S that identifies two or more
distinct regions of independent radial behavior by invoking a step
function model. For the case of a barred spiral with a constant bar
and quadratic spiral, for instance, this corresponds to minimizing

6 =S =6 ¼

Pt�1

n¼1

�n þ �nþ1j j2; n < t;

PN�3

n¼t

��n þ 3�nþ1 � 3�nþ2 þ �nþ3j j2; n � t:

8>><
>>:

ð14Þ

The elements of S with n < t reflect the a priori assumption that
the bar pattern speed is constant, while those for n > t associate
a quadratically varying pattern speed with the spiral. The index t,
a free parameter, locates the radial binwhere the transition between
the two patterns occurs. Obviously, the number of available bins
constrains the order of the polynomial in a given radial zone.

Once we have chosen S, we initially choose k to reflect com-
parable amounts of�2 minimization and regularization by letting

k ¼ k0 ¼ Tr K̄T = K̄
� �

/Tr Sf g. Since we are in the business of

generating solutions based on particular models, k is modified to
arrive at the regularization required to return solutions of a given
type. This modification generally consists of an increase in k
over k0. Consider how the regularizing parameter k regulates the
degree of smoothness of the solution to the weight placed on the
data: with k ¼ 0, equation (10) corresponds to �2 minimization
(and becomes an unbiased estimator with the smallest variance),
however yielding highly oscillatory solutions, while k ! 1 cor-
responds to a maximally smooth estimator with nonvanishing
variance.

Fitting data sets with different spatial coverage will change the
effect of k on the solution (e.g., larger bins require less regular-
ization). The most appropriate choice for k (and S) should be
made on a galaxy-by-galaxy basis, according to the quality of
information to be extracted from observations.

3. OTHER CONSIDERATIONS

3.1. Regularization-induced Bias

By imposing assumptions about the smoothness of the pattern
speed, regularization inevitably introduces complications for ex-
tracting realistic solutions. To understand how these arise, con-
sider the solution for a barred spiral galaxy. The nature of the
calculation (from out to in) has implications for the accuracy of
the bar estimates, in particular. Not only do the �j for bins cov-
ering the bar rely on the greatest number of matrix elements (and
errors therein), but the bar estimate depends critically on the so-
lution for the spiral and all outer bins via equation (8). Conse-
quently, merely requiring the pattern speed in the outer bins to be
constant with regularization out to the edge of the surface density
(for instance), effectively removing fluctuations that might bet-
ter fit the data, will have consequences for the bar solutions. So
while the regularization is particularly fast and effective for tests
for the radial behavior of patterns, it can also hinder the realiza-
tion of accurate solutions.

For the simulations studied here, the risk of regularization-
induced bias is inherited from the adopted quadrature. Recall our
requirement that all slices cover the full extent of the ‘‘emis-
sion,’’ so as to ensure all integrals be fully converged, and re-
latedly, that the last matrix element governs the outermost slice
position. In the barred spiral simulation of x 4.2, for example,
such an extensive quadrature presents us with outermost slices
that pass through a region where there is simply no discernible
pattern (as indicated by the surface brightness distribution and
its Fourier decomposition; see next section). While these slices
themselves do not provide direct estimates of the patterns of
interest, the corresponding bin values are necessary for calculat-
ing the bar and spiral solutions. Moreover, the quality of these
solutions will be intimately related to the treatment of the outer-
most bins. For accurate pattern speed measurement, we there-
fore find it essential to identify, and reduce the influence of,
the compromised zone by not enforcing regularization on these
bins.

3.2. Fourier Diagnostics

With the above concerns in mind, we have tested and used the
following scheme. Given slices that pass through an outer region
that either contains little information from a strong pattern, is sus-
pected of sustainingmultiple patterns, or displays only faint emis-
sion, we choose in such a case to let the values in the outermost
bins be calculatedwithout regularization with the restriction, only,
that they minimize the �2. Once a particular bin (at rc, the cut ra-
dius) has been reached, regularization is imposed with all remain-
ing inward bins generated accordingly.
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In our procedure this corresponds to using an S indexed by the
cut bin c that is lowest block zero. And the ‘‘cut’’ radius identifies
the location in the disk where the outermost discernible pattern
ends. Note that this is in contrast to altogether ignoring the outer
portion of the disk. We prefer this procedure for two reasons:
(1) as qualified later in x 4.2.2, when each integral is truncated
within the disk, the quadrature is at greater risk of ignoring infor-
mation critical for characterizing the patterns uniformly through-
out the disk; and (2) like the transition radius rt, we can easily
incorporate rc as a free, although restricted, parameter in ourmodels.

In practice, extracting the bar and spiral pattern speeds for the
simulated barred spiral in x 4.2 involves generating a group of
solutions with various bar-to-spiral pattern transition radii for a
given cut location. Throughout the analysis, we choose the cut ra-
dius to reflect a priori knowledge of the outermost measurable
pattern’s termination radius estimated from the surface brightness
and its Fourier decomposition.When referred to, the power in each
Fourier component, or modem, is given by the norm of the com-
plex Fourier amplitude

Ii ¼
XN
n¼1

eim�n ; ð15Þ

where �n is the angular coordinate of each of the N particles at
each measured radius.

For the barred spiral in x 4.2, for example, we combine evi-
dence from the surface density (Fig. 3), where beyond the bar
there is enhanced spiral surface density from only a limited radial
zone, with the Fourier spectrum to identify a region in the disk
outside the spiral that is susceptible to regularization-induced bias.
Specifically, the Fourier power spectrum (Fig. 4) shows that at
r � 5:0 the second clean hump in m ¼ 2 power decreases to al-
most zero,marking the end of the spiral. Past this radius, the (strong)
m¼ 2 component (between r�6:0 and 8.0) is not associated with

visible spiral structure (see Fig. 3). Reckoning this outer zone to
be incompatible with a simple pattern speed model, then, we con-
sider only the inward bar and primary spiral pattern speeds to be
measurablewith regularization. Figure 19 of Debattista et al. (2006,
hereafter D06) for this simulation (Fig. 5 in this paper) confirms
this; not only does the spiral pattern terminate at rc � 5:0, but be-
yond this radius the pattern speed is multivalued (this, of course,
would be indiscernible in a real galaxy). In this case, imposing
form with regularization on bins of suspect quality and behavior
outside the spiral will likely impair the solution of interest. We
therefore restrict the cut bin for the barred spiral simulation to
4:5 < rc < 6:0, representative of where the primary spiral pattern
terminates in the disk. As mentioned in x 4.2, this step is substan-
tiated by our finding that a cut radius of rc ¼ 4:8 is one of several
�2 minima given a range of possible cut radii. And furthermore,
solutions generated in this manner are judged to overall provide
a considerably better fit to the data than solutions where regular-
ization is imposed out to the edge of the surface brightness (ac-
cording to the scheme described in the next section).

Fig. 3.—Face-on display of the barred spiral simulation’s surface brightness
distribution projected with a �30� rotation about the z-axis. For reference, the
alignment of the TWR quadrature for a frame at this orientation is designated
SA ¼ þ60�.

Fig. 4.—Fourier power spectrum of the barred spiral simulation’s surface
brightness distribution shown in Fig. 3. Modes up tom ¼ 4 are plotted as a func-
tion of radius:m ¼ 1 (dotted line),m ¼ 2 (solid line),m ¼ 3 (triple-dot–dashed
line), and m ¼ 4 (dashed line).

Fig. 5.—Contours of the barred spiral simulation’sm ¼ 2 Fourier mode show-
ing a bar pattern speed �b ¼ 0:29, a bar-to-spiral transition of rt �2:5, and a
dominant spiral pattern speed�s ¼ 0:18 out to r � 4:5 5:5, beyond which mul-
tiple spiral modes exist.
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3.3. Weighting Schemes and Goodness of Fit

Given the data, we simultaneously generate model solutions
with different radial dependencies for direct comparison for each
side ( y > 0 or y < 0) independently. We then average the two
like-model solutions together to construct a global solution. ( In
those instances when model solutions include a cut bin, the av-
eraging occurs over the regularized part of the solutions only, in
order to maintain the ‘‘unbiased’’ quality of the unregularized
part of the solutions for each side of the galaxy.) Note that while
the assumption that the patterns are indeed global is not overly
inspired for the simulated galaxies studied here, putting this into
practice on a real galaxy requires that the assumed galaxy kine-
matic parameters are accurate and that such symmetry exists.

With each globalmodel solutionwe generate a complete set of
vh i using equation (7). We then judge each model through the �2

�
(�2 per degree of freedom) goodness-of-fit estimator of the repro-

duced to actual hvii ¼ bi /(
R
� dx)i given measurement errors �

vh i
i ,

in keepingwith the standard TWanalysis. Note thatwith this choice

the �i in equation (9) are related to the errors �
vh i
i by (

R
� dx)i. That

is, the calculation fits to the bi given errors�i while our�
2 estimator

considers the differences from hvii given errors �
vh i
i .

While for a real galaxy inaccuracies in the assumed position
angle (PA) have the largest potential for introducing errors into
hvii, we prefer that the measurement errors � vh i reflect random
noise in the data, only. (Systematic errors prove more practically
assessed through direct tests of the sensitivity of the results to
departures from the nominal values for the PA or inclination, for
instance.) For the simulations studied here, then, we obtain errors
�

vh i
i under the assumption that the inverse mirror image of each

hvii on one side of the galaxy should be the same as on the other
side (i.e., the patterns are symmetric). We then assign a global er-
ror � vh i to each slice where � vh i ¼ (

P2N
i¼1 �

vh i
i )/2N (and N is the

number of bins/slices used in the TWR calculation on a single
side).

In practice, the simplest �2 weighting schemes are either uni-
form weighting for all slices or weighting by the intensity, which
should give more weight to slices where the signal is strongest.
We have chosen the former since we are interested in �p over a
broad radial range and prefer that our result is not dominated by
just the slices with the highest signals (which can vary dramat-
ically). Furthermore, the choice of assigning an identical error
� vh i to each slice carries with it an implicit weighting scheme for
equation (10). For an exponential surface brightness profile, for
example, slices on either side of the galaxywill have progressively
smaller

R
� dx as jyij increases. This corresponds to errors �i pro-

portional to
R
� dx, then, that grow larger from out to in. Since in

most cases the uniformweighting schemewill be in actualitymost
restrictive of the outer bins (the goodness of which will affect
the solution inward), this choice is particularly well suited for the
TWR calculation.

Given our choice of weighting scheme, there are two impor-
tant considerations that demand that we calculate the �2 over all
slices. First, the innermost bins contribute to the vh i in only the
innermost slices and hence contribute relatively negligibly to the
�2, despite possibly larger weights Kij (reflective in part of a sur-
face brightness that is centrally peaked, say) than bins at larger
radius. This is especially true when an inner pattern appears only
over a small fraction of the total bins, and the reproduced vh i of
even those slices that pass directly through the inner pattern still
rely (perhaps predominantly) on the solution out to the largest
radial bin. However, since the goodness of the inner bins is di-
rectly related to the goodness of the bins at larger radii, by consid-
ering all slices we more effectively judge the whole solution.

Secondly, in cases when some number of outermost bins are
calculated without regularization, it is critical to account for the
( largely positive) effect that these bins have on the solution in-
ward, especially frommodel to model. In our current scheme, the
values of the ‘‘unregularized’’ bins are not quite identical to those
in the completely unregularized solution since the quantity that
they minimize still includes participation from nonzero elements
in the smoothing functional S and what is currently a model-
dependent k. That is, slight variation in the values of the unreg-
ularized bins from model to model is apparent, and we cannot
ignore the minor differences this introduces to the regularized
part of the solution. Although this is a minor effect, by consid-
ering the vh i of all slices in the�2, we prevent solution preference
based on the unregularized bins (which act essentially as stand-
ins) from being introduced.

The first consideration above also prevents us from calculat-
ing judicious error bars on the solutions according to the varia-
tion of individual model parameters over a typical �2 confidence
interval; in practice, the value of an inner pattern with minimal
radial extent can change considerably with little effect on the �2.
Indeed, we find that the errors generated according to such a pre-
scription are unrepresentative of the goodness of the solutions as
returned by the calculation.

In x 4.2.1 we describe the dependence of both inner and outer
speeds on the location assigned to the transition between the two.
An obvious progression for future applications of the TWRmethod
would be an exploration of the covariance of what we consider
here, to first order, ‘‘free parameters,’’ especially for the purposes
of improved error estimation. Presently, however, we construct
error bars for model solutions by considering the range of param-
eters in the best solutions at different assumed projections. As
pertains to the sections that follow, by considering an overall so-
lution in this manner, we can fairly account for the uncertainty
introduced for real galaxies by the reality that each can be sam-
pled at only a single PA.

4. TESTS OF THE TWR METHOD ON SIMULATIONS

In order to establish guidelines for applying the regularized
calculation to observations of real galaxies, we next perform
tests of the method on simulations with known pattern speeds.
Each case invokes unique models for �p(r), which we motivate
and discuss in detail. The procedure for engaging the method
with maximum accuracy then follows from careful examination
of the quality of solutions given the available information. Al-
though quite detailed, these individual studies together constrain
general scenarios and practices to extrapolate onto observations
of similarly structured, real galaxies.

4.1. N-Body Systems

We use three simulations in this study. The first, which we
refer to here as simulation I, constitutes a barred galaxy with spi-
ral structure. Originally presented in D06, where it is referred to
as run L2.t12, it consists of a live disk immersed in a rigid halo.
A complete description of the model parameters is contained in
D06.

The second (spiral ) simulation, which we refer to here as sim-
ulation II, is unpublished. It was designed with the main aim of
generating strong spiral structure using the groove mode mech-
anism of Sellwood & Lin (1989) and Sellwood & Kahn (1991),
in which dynamical instability develops from a ‘‘groove,’’ or nar-
row feature, in the phase-space density at a particular angular
momentum. A trailing spiral wave is generated, and at the Lindblad
resonances of the wave, further grooves develop such that the
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instability is recurrent. Like simulation I, it consists of a rigid
halo and live disk, but it also includes a live bulge component. The
bulge constitutes 25% of the baryonic mass and is sufficiently
concentrated that a bar is very slow in forming. The disk has Toomre
Q ¼ 1:2; in order that a strong spiral was seeded,�6%of disk par-
ticles in a narrow angular momentum range were removed, leav-
ing 4 ; 106�169; 480 particles including the bulge. The result,
as can be seen in Figure 11 below, is the formation of a strong but
transient spiral.

The last simulation in this paper, simulation III, is a double-barred
galaxy generated using the method of Debattista & Shen (2007).
This high-resolution simulation consists of live disk and bulge
components in a rigid halo potential. The model has�4.8 million
equal-mass particles, with�4million in the disk and�0.8million
in the bulge such that the bulge has massMb ¼ 0:2Md , whereMd

is the disk mass. The initial ToomreQ of the disk is’2. The for-
mation of the secondary bar is induced by making the bulge ro-
tate (tomimic a pseudobulge).More details of the simulation can
be found in Shen & Debattista (2007), where it is referred to as
run D.

As in D06, all lengths and velocities are here presented in nat-
ural units. We analyze a snapshot of each simulation at a single
time step with the disk in the (x, y)-plane. By rotating the system
about the z-axis, we assign a line-of-sight direction to establish
the kinematical major axis. Another rotation about the x-axis gives
the system an inclination� (chosen throughout at� ¼ 45�, unless
otherwise specified). The snapshot is then projected onto the sky
planewhere xobs ¼ x and yobs ¼ y cos �. For a given slice spacing,
the slices along which the calculations occur are aligned perpen-
dicular to the line-of-sight direction (parallel to the kinematical
major axis). The orientation of these slices, which is identical to
the disk PA in a real observation, is designated uniquely the slice
angle (SA) in the studies that follow.

4.2. Simulation I: Barred Spiral Galaxy

The bar and spiral structure in this simulation, first presented
in D06, is featured out to r � 5:0, clear in the surface density
(Fig. 3) and its Fourier decomposition (Fig. 4). Beyond r � 5:0,
the Fourier decomposition indicates the possible presence of a
third pattern. With step models for�p(r), then, we might reason-
ably extract pattern speeds for three distinct structures. However,
the m ¼ 2 mode between 5:0 < r < 8:0 is not associated with
a strong surface density enhancement. And as remarked on in
x 3.2, Figure 19 in D06, reproduced here in Figure 5, shows that
the pattern in this radial zone is maintained by multiple distinct
pattern speeds. (Note that a real galaxy would not be disposed to

the analysis provided with this type of plot. It is available for this
simulation, only, and we include it here for the sake of compar-
ison.) In a clear account of regularization-induced bias, test solu-
tions based on a three-pattern speed model have considerably
larger �2 than those parameterizing a bar and single spiral. We
therefore reject models with a third pattern speed and use our cut
scheme where solutions are generated without regularization up
to a cut radius rc, which parameterizes the end of the primary
spiral pattern.
The actual pattern speeds of the bar and spiral structure to be

reproduced by our solutions are�b ¼ 0:29 for the bar and a con-
stant �s ¼ 0:18 for the spiral, as estimated from Figure 5 (from
which we also estimate a bar-to-spiral pattern transition radius
r � 2:5). In our models of �p(r), we express the a priori assump-
tion that the bar pattern speed is constant by using an S like that
in equation (14) but where, for n > t, S is reflective of either
a constant, linear, or quadratically varying spiral pattern speed.
Solutions with spirals of order 0, 1, and 2, then, have a total of
4, 5, and 6 degrees of freedom, respectively. The free parameter t
we restrict for all models such that 1:8 < rt < 3:0, according to
bar length estimates from Figure 3 (aB � 2:2) and Figure 4.
For�r ¼ 0:3 bins, we require a total of 71 slices (35 on each

side) to reach the edge of the surface brightness at r �10:5. This
places the cut bin between 15 < c < 20, according to the pre-
viouslymotivated restriction 4:5 < rc < 6:0 estimated from Fig-
ures 3 and 4.
In light of the discussion in x 3.3, we construct errors for our

estimates to reflect the expected accuracy of TWR bar and spiral
solutions given a particular observational scenario. Specifically,
we perform the calculation for a range of SAs spanning the up-
per half-plane of the galaxy (quadrants I and II), namely, �15

�
,

�45�, and�75�. Each SA corresponds to a unique disk PA. The
resultant bar and spiral estimates generated using the�r¼ 0:3 bin
width (to be discussed at length in the following sections) are
listed in Table 1, and the average and rms of the best-fit solutions
for this SA range are shown in Figure 6. There, horizontal error
bars represent the dispersion in rt and rc in the solutions based on
variations from SA to SA for the �r¼ 0:3 radial bin width.
Rewardingly, the best-fit solutions are quite accurate; the com-

prehensive spiral and bar estimates in Figure 6 are 6.7% and

TABLE 1

TWR Estimates for Simulation I

SA

(deg) �b �s rt rc

75............................. 0.325 0.149 3.0 5.7

45............................. 0.327 0.111 2.4 4.8

15............................. 0.343 0.184 2.4 4.5

�15 ......................... 0.269 0.172 2.7 4.8

�45 ......................... 0.313 0.199 3.0 5.4

�75 ......................... 0.303 0.203 2.4 6.0

Actual ...................... 0.29 0.18 2.5 5.0

Notes.—TWR bar and spiral pattern speeds from the barred spiral
simulation listed here are estimated with TWR solutions calculated
using a �r ¼ 0:3 bin width for a range of SAs. The third and fourth
columns list the connate estimates for rt and rc. Values for the actual
pattern speeds are shown in the last row.

Fig. 6.—Best-fit solution and error bars from the TWRmethod applied to the
barred spiral simulation averaged over six SAs. The bar �b ¼ 0:31 � 0:02 and
spiral �s ¼ 0:17 � 0:03 are shown as solid lines with dashed errors. Errors in
the bar-to-spiral transition rt ¼ 2:6 � 0:28 and spiral termination radius rc ¼
5:38 � 0:54 are represented by horizontal error bars at the top.
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8.3% from their actual values (with�8% error in�b but a slightly
larger error of�18% in �s). So, too, are the determinations of rt
and rc, according to Figures 4 and 5. Furthermore, our solutions
correctly reproduce the functional formof the spiral pattern speed.
At all SAs, out of all solutions with rt and rc within their restricted
ranges, the lowest reduced �2 solution corresponds to a constant
spiral. Figure 7 shows a comparison between the actual and best-
reproduced vh i at each slice position yi used in the calculation for
the 15

�
SA. The vh i reproduced by the best-fit constant bar and

constant spiral solutions are shown in the left panel, while those
from the optimum (lowest �2

�) solution with a quadratic spiral
are plotted in the right panel.

The close reproduction of the actual pattern speeds by the so-
lutions in Figure 6 occasions further evaluation of strictly un-
regularized TWR calculations. Consider the values in radial bins
inside r � 2:0 in typical unregularized solutions for this simu-
lation (Fig. 2). That there is little to no indication of �b ¼ 0:29 in
the left panel is perhaps not surprising: the large number of bins
that accompany the choice of the small bin width would seem to
guarantee a high level of noise propagated throughout the solu-
tion. However, in the slightly more stable solution with the wider
bin width, the inner bins are still unrepresentative of the actual
pattern speed in this zone.We can understand this as a systematic
error introduced by the noise that not only propagates but also
compounds as the full solution assembles from the outermost to
the innermost radius; �p(r) in a given bin reflects errors from all
exterior radial bins, making the value in that bin more likely far
removed from the actual value.

4.2.1. Morphology-dependent Effects and Intrinsic Limitations

The use of simulations that can be studied at multiple projec-
tions provides us with perhaps the most critical assessment for
the accuracy of TWR solutions. Figure 6 suggests that the TWR
method should perform well for any given viewing angle. How-
ever, although still quite small, the rms in each estimate is largely
reflective of the nontrivial effect that the orientation of the pat-
tern with respect to the SA used in the calculation can have on
solutions.

We can understand the origin of the differences in solutions
for the range of SAs in Table 1 by considering the impact of the
limited azimuthal range of the bright spiral enhancement (clear
from the surface brightness distribution in Fig. 3, where the spiral

extends almost perpendicular to the bar major axis). That is, at all
SAs the quadrature accumulates fragmentary information from
the spiral since only some of the slices that cross the full radial
zone of the spiral pattern intersect the strong spiral structure. But
whereas both the bar and spiral estimates seem to suffer at SAs
in quadrant II (i.e., positive SAs), our measurements of �s in
quadrant I are quite accurate. According to the morphology, in
quadrant II it appears that the limited sampling of the spiral asym-
metry implicit in slices other than those that also pass through the
bar entails slightly less accurate spiral estimation.

To interpret the distinction between solutions from the two
quadrants, consider the combined influence of regularization and
our chosen weighting scheme. Specifically, since the regulariz-
ing S induces the coupling of all bins within the same radial zone,
even when the spiral-zone crossing slices do not intersect the
strong spiral enhancement, the bins there inherit information from
bins at the same radius from slices that do intersect the arms.
According to our weighting scheme, however, this coupling is
not uniform; the degree of support at each azimuth is influenced
by themeasurement errors for each slice, which grow larger from
out to in. As a result, �s is best constrained by information from
slices passing through the outer radial zone of the spiral alone
(not those passing through the bar). So when in quadrant II the
spiral asymmetry appears in only the inner slices, �s is less pre-
cise than when these outer slices clearly intersect the spiral arms.
According to equation (8), since the bar estimate is directly re-
lated to that of the spiral, the result for these SAs is error in both
�s and �b.

The corresponding determination for the radial domain of the
bar pattern, on the other hand, is not as obviously sensitive to this
issue. Not only is the bar end reasonably well defined in both
quadrants, but information from the bar that contributes to the pa-
rameterization of rt is reinforcedwith regularization in themanner
described above. The spiral termination radius, too, seems fairly
consistent from SA to SA. But since the asymmetry is weaker
(and there is less information) at that location in the disk, we find
that this parameter requires the most restriction (indeed, our de-
terminations of rc completely span the allowed range).

Overall, then, our determinations for rt and rc are stable and
accurate, eachwith less than 11% error, even in quadrant II. Never-
theless, since the pattern speed estimates from SAs in quadrant I
seem to comparatively benefit from the high quality of information

Fig. 7.—Comparison of model solution-reproduced ( filled circles) to actual (open circles) integrals hvii ¼ bi /
R
� dx as a function of slice position y for the barred

spiral simulation for the best-fit constant�b, constant �s solution with rt ¼ 2:4 and rc ¼ 4:5 (left) and constant�b, quadratic�s solution with rt ¼ 2:7 and rc ¼ 5:4 for
SA ¼ 15� (right). Only those slices that show a contribution from bins inward of rc are shown. The adopted global error � vh i is shown in the upper right corner.
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from both patterns, we conclude that position angles that provide
the most uniform slice coverage of all patterns in the disk are
preferred.

The largest disparity between step model solutions from vari-
ous SAs can largely be attributed to limitations in determining
the location of the transition between the two patterns. That is,
solutions are affected by the finite bin width inherent to the nu-
merical calculation; slight incompatibility between the actual tran-
sition and that to which the solution is limited (given the bin
width) can result in errors around 10%. This is a more pervasive
effect than morphology alone and more obvious with the use of
a slightly larger bin width than �r ¼ 0:3. Nonetheless, we can
make several informed inferences about the result of the finite
bin width by considering the nature of the TWR calculation. Spe-
cifically, since the transition determines the contributions of in-
ner and outer patterns to the integral on the right-hand side of
equations (4) and (7) through the matrix elementsKij, a mismatch
between the transition bin and the actual transition radius will cor-
rupt the separation of the contributions of the two patterns. Note
that this is precisely the source of the covariance between model
parameters intimated in x 3.3.

To understand the effects of (minor) radial pattern misassign-
ment, consider a step function solution that parameterizes the
extent of a bar pattern speed along with that of a spiral. When the
transition bin between the two patterns underestimates the actual
transition by a fraction of the bin width, for instance, we would
expect the numerical calculation to effectively subtract off from
bi a contribution from the ( lower) outer pattern where a higher
pattern actually exists (e.g., eq. [8]), slightly raising the value of
the inner pattern speed. Conversely, we expect an overestimation
of the transition to result in a slightly lower inner pattern speed.
More subtle effects can occur, however, depending on the geom-
etry of the patterns, as illustrated for this simulation in x 4.2.4.

For a range of SAs, we emphasize that the resultant errors, in
possible combination with an undersampled transition, are min-
imal, as long as the bin size is sufficiently small, and are not the
result of vastly different transitions for each SA; we find that the
transition between patterns in the best solutions is generally rela-
tively stable with changes in SA. This may be unexpected from
the perspective of the traditional TWmethod since the projected
length presented to the slices by the bar will depend on the relative

orientation of the slices with its major axis (and slice orientation
errors tend to be large, as detailed next for this simulation).

4.2.2. TWR versus TW

In light of the above results, we next examine the improve-
ments available to pattern speed estimation using the TWR cal-
culation relative to the TWmethod. We specifically compare the
bar pattern speed estimates arrived at using the TWRmethodwith
those using fully extended TW integrals. Although TWestimates
of �b in the presence of a secondary structure may also be at-
tempted using truncated integrals that extend to just past the end
of the bar (such that information from the bar alone is dominant),
we examine the former case for two reasons: (1) to compare the
twomethods under identical conditions (i.e., using the same data
points hvii) and (2) to study the influence of the relatively weak
spiral (and evaluate the assumption of negligible nonaxisymmetric
motions beyond the bar).
Although we use fully extended integrals to perform the TW

calculation, even whenmaking estimates of the bar pattern speed,
the innermost slices clearly supply evidence for a bar pattern speed
that is distinct from that of the other structure in the disk. Fig-
ure 8 shows a typical plot of vh i versus xh i for this simulation,
where the inner 11 slices are indeed best fitted by a steeper slope
than for all slices.
For all of the other SAs studied in the previous section, we

measure �p with a unique number of bar-crossing slices. This is
intended to reproduce an optimal TW observing strategy that
makes use of only those slices that intersect the enhanced bar sur-
face density. That is, since the projected length presented to the
slices by the strong bar structure depends on the relative orien-
tation of slices with the major axis of the bar, the number of slices
that intersect the bar enhancement varies from SA to SA (from 7
to 17 for this simulation at the six studied SAs). Table 2 lists this
optimal number of slicesN at each SA along with the correspond-
ing pattern speed estimate. All entries in the table correspond to
slopes of best-fit straight lines (and the corresponding intrinsic
scatter) in plots of vh i versus xh i.
On inspection, Table 2 seems to suggest that, even in the pres-

ence of the spiral asymmetry, information from the bar is max-
imal in the bar-crossing TW integrals. Despite also reflecting a
contribution from the spiral pattern, these bar estimates are fairly
accurate (although presumably not as accurate as would be the
case for a strictly SB0 galaxy such as NGC 7079). However, as in
Table 3, if we extend the slice coverage at each SA out to jyj �
2:4 using the inner 17 slices (at �y ¼ 0:3 spacing; closer to the
full extent of the radial zone of the bar pattern, according to Fig. 6),
then the quality of the TW estimates diminishes with the inner,
bar pattern speed estimates approaching that from a fit to all slices

Fig. 8.—Plot of vh i vs. xh i for all slices with jyj < 5:1 for the barred spiral
simulation at SA ¼ �45�. The dashed line is the best-fit straight line to the inner
11 slices (asterisks), while the dotted line is the best-fit straight line to all slices
shown (asterisks and crosses).

TABLE 2

Optimal TW Bar Estimates for Simulation I

SA

(deg) N slices �p �

75.......................... 7 0.270 �0.010

45.......................... 11 0.282 �0.062

15.......................... 17 0.208 �0.007

�15 ...................... 15 0.248 �0.026

�45 ...................... 11 0.294 �0.008

�75 ...................... 9 0.233 �0.053

Notes.—All entries originate through the use of an optimal
number of slices spaced at �y ¼ 0:3. The number of slices N
used in the TW calculation is indicated.
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with jyj < 5:1; even the true bar-crossing slices contain nonneg-
ligible information from the spiral pattern.

Unlike the TW method, the TWR method is not relegated to
the use of only those slices where the bar contribution is maxi-
mized. In principle, the inner solutions are accessible through the
very use of information from beyond the bar (namely, from the
zone of the spiral ) and are improved when this information is ra-
dially coupled (e.g., by regularization). This aspect of the cal-
culation allows for the return of pattern speed solutions without
reference to an assumed pattern extent and provides, moreover, an
independent means of determining the radial domain of patterns.

Of course, this is not to imply that a deficiency of usable slices
in TW estimates prevents accurate pattern speed measurement,
or determination of pattern extent, for that matter; using slices
that cross primarily through the enhanced emission from the bar,
TW estimates from SB0 galaxies have been successfully used
to observationally confirm that bars end at or inside their corota-
tion radii. However, it does suggest that in the presence of non-
negligible asymmetry exterior to the bar, TW bar estimates are
susceptible to errors introduced by the use of slices positioned
near the bar end, which are presumed to reflect the bar pattern
speed but in reality include a significant contribution from this
structure. Consider a typical plot of vh i versus xh i for bar-crossing
slices. The best-fit slope determination for �p from such a plot
is primarily governed by slices with the largest vh i and xh i. Since
in SB0 galaxies vh i and xh i approach zero in slices at or near the
projected bar end (since they are presumably too far past the strong
bar structure to contain information about the bar andmark, rather,
a return to axisymmetry in the disk), even when TW estimates
consider these ‘‘near zero’’ slices, they contribute minimally to
estimates for �p. (See Debattista [2003], where studies with
a simulated SB0 include a number of slices sampling the full ex-
tent of the bar.) But when there is considerable asymmetric struc-
ture present beyond the end of the bar, similarly positioned slices
will reflect this contribution, impairing measurement of the true
bar pattern speed.

In the barred spiral simulation, this consequence can be charac-
terized on inspection of xh i, vh i, and �TW

p ¼ vh i/ xh i as a function
of the limit of integration Xmax ¼ X0 in a typical slice at y ¼ 1:2
(see Fig. 9 for SA¼�75�). �TW

p for this slice, which, according
to our estimate for aB, crosses the outer region of the bar, actually
seemsmore reflective of the spiral pattern speed (beyond the dis-
continuity at X0 � 3:2). Indeed, past X0 � 3:2 where xh i crosses
zero we can infer that this bar-crossing slice contains substantial
participation from the spiral; both xh i and vh i decrease to a dip
between X0 ¼ 4:0 and 6.0 before reaching a plateau. This is evi-

dence that, despite the relative weakness and limited extent of
the spiral as indicated by the surface brightness distribution, the
asymmetry in the disk should not be considered dominated by
the bar alone. Moreover, this is a clear indication that the TWR
calculation, which identifies and effectively removes the spiral
contribution from the fully extended�-weighted velocity integrals,
can improve on traditional TW bar estimates that also use fully
extended integrals. Of course, as displayed by Figure 9, integrat-
ing only between�X0 � 2:5may alone provide a reasonable bar
pattern speed and relieve all other TW slices from the spiral con-
tribution. However, this would provide only a single pattern speed
estimate where two are possible; using the TWRmethod and fully
extended integrals, both �b and �s can be measured.

Figure 9 also raises a crucial point related to the required limit
of integration along each slice in the TWR calculation: if there is
a clear plateau in the integrals reached before the edge of themap
boundary, why not simply truncate the integrals where they have
converged (common to TW estimates) rather than use integrals
extending to the edge of the surface brightness and that present
outermost bins that we demand must be cut (that is, calculated
without regularization), anyway? The plateau reached at X0 �
8:0 would suggest that truncating the integral there could suit-
ably account for information from the major sources of asym-
metry in the disk. However, this same distinction is not clearly
shared by all slices, especially those at large jyj. If we associate
the plateau in this slice at y ¼ 1:2 with the limit of integration
Xmax ¼ 8:2 and hence the total radial extent Rmax required of the
quadraturewhereRmax ¼ ½X 2

max þ ( y/cos �)2�1=2, then this locates
the outermost slice position at ymax ¼ (Rmax��r)/cos �, as well

TABLE 3

Traditional TW Estimates for Simulation I

Inner 17 Slices All Slices

SA

(deg) �p � �p �

75................................ 0.234 �0.004 0.115 �0.008

45................................ 0.217 �0.045 0.094 �0.018

15................................ 0.208 �0.007 0.157 �0.009

�15 ............................ 0.216 �0.016 0.121 �0.007

�45 ............................ 0.278 �0.009 0.166 �0.009

�75 ............................ 0.175 �0.010 0.128 �0.010

Notes.—As in Table 2, the TW estimates for this SA range are generated
with slices spaced at �y ¼ 0:3. Here the second and third columns list the
estimates �p along with errors � using the inner 17 slices, respectively, while
the fourth and fifth columns are from a fit to all slices with jyj � 5:0, out to the
inferred spiral end.

Fig. 9.—Variation of xh i (top), vh i (middle), and�TW
p ¼ vh i/ xh i (bottom) with

X0 for the slice at y ¼ 1:2 with SA ¼ 15� for the barred spiral simulation.
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as the extent of the integral along this slice. It is easy to check that
(at least for this slice orientation) the integral has not achieved
convergence by this point, nor have most other integrals in the
disk by Rmax.

Rather than risk ignoring information critical for character-
izing the patterns uniformly throughout the disk, then, we choose
to include in the quadrature all information out to the edge of the
surface density. Indeed, this serves to perform a function similar
to truncating TW integrals. The difference in the two procedures
arises from the fact that while the limits of integration for each
individual slice can be adjusted for a given structure of interest
in the TW calculation, the quadrature in the TWR method delin-
eates specific bounds that must encompass complete information
from all extended patterns in the disk.

4.2.3. Systematic Errors

In this section we use the barred spiral simulation to consider
the errors introduced to TWR pattern speed estimates in real gal-
axies. We can expect errors in the assumed PAdisk to dominate
errors in the TWR calculation, given that such errors translate
significantly to inaccuracies in the traditional TW calculation via
the line-of-sight velocity integral, which is also, of course, a prom-
inent feature of the radial TWequation. Table 4 summarizes the
results for a standard PA error of �PA ¼ �2� on the SAs in quad-
rant I chosen for their advantages, as evidenced by the discussion
in x 4.2.1. The average and rms for bar and spiral estimates from
both the TWR and the traditional TW methods are listed. (The
TW ‘‘bar’’ estimates are obtained by fitting to the inner, nominal
number of slices listed in Table 2, while all slices with jyj < 5:1
are considered in the ‘‘spiral’’ estimates.)

Even this small �PA introduces considerable errors (relative to
the known pattern speeds) to both types of bar estimates. These
errors in �b can be many times larger than the formal rms. But
whereas the errors are comparable in the TWR and TW bar esti-
mates, the errors in the spiral estimates tend to be smallerwith TWR
than TW. Rewardingly, with this error not only are the TWR spi-
ral solutions still definitively constant and accurate to�15%, but
the radial domains of both pattern speeds are still well determined.
The transition between the bar and spiral rt and the termination
radius of the strong spiral pattern rc are effectively unchanged
from the �PA ¼ 0 case; for both �PA ¼ þ2� and �PA ¼ �2� we
find rt ¼ 2:8 � 0:37 and rc ¼ 5:4 � 0:46.

Besides the effects on PAdisk measurement as studied by
Debattista (2003), galaxy inclination and ellipticity play perhaps
more prominent roles as sources of error in TWR solutions rel-
ative to traditional TW estimates. Presumably, large inclination
errors will prevent the association of information into accurate
radial bins, given that r ¼ yobs /cos �. We expect this effect to be

minimal at moderate inclinations since dr / d�sin �, and most
significant at small inclinations where one would generally find
that the difficulty in inferring in-planemorphology and kinematics
makes the TW method impractical in any case. At a moderate,
45� inclination we find that the barred spiral solutions for �3�

inclination error differ from the actual pattern speeds by only the
change in sin � introduced by the line-of-sight velocity.

4.2.4. Transition Misidentification

We have shown that the regularized TWRmethod can be used
to parameterize the number and radial domain of multiple pattern
speeds in a single disk. Formally, the contribution of each to the
line-of-sight velocity integral is established through the designa-
tion of a transition between patterns. In our scheme this transition
is a free parameter, but the method, of course, could plausibly as-
similate other transition identification methods to similar effect,
much like that in the Maciejewski (2006) adaptation of the TW
method. Specifically, in Maciejewski (2006) a plateau in the in-
tegrals

R X0

�X0
�x dxwith variation inX0 is associated with the tran-

sition from an inner to an outer pattern (for details seeMaciejewski
2006). This transition is then used to separate the disk surface
brightness into two unique components (one for an inner second-
ary bar, one for an outer primary bar), thereby governing the de-
coupling of the pattern speeds.
We here pursue this type of diagnostic for the case of the sim-

ulated barred spiral in order to test the reliability of employing
the TWRmethod with such independent evidence for pattern ex-

tent. Figure 10 plots the values of
R X0

�X0
�x dx/

R X0

�X0
� dx as a func-

tion of R0 for five bar-crossing slices ( y1 ¼ 0:0, y2 ¼�0:6, y3 ¼
�0:3, y4 ¼ 0:6, y5 ¼ 0:9) at SA¼ 45�, where R0 ¼ ( y2i þX 2

0 )
1=2.

For this projection, there seems to be a plateau atR0 � 1:2.We
note that this value is smaller than the bar pattern extent indicated
by our best-fit solutions (and the major-axis bar length estimated
by inspection of the surface brightness distribution) and, further-
more, the same analysis performed over the range of SAs does
not always as clearly show the same behavior. Presumably, this
particular value is more indicative of the bar minor-axis length
than the full radial zone of the bar pattern, since slices at a 45

�
SA

sample along X perpendicular to the bar major axis; other slice
orientations are similarly limited to sampling the bar according to
its specific projection.

TABLE 4

PA Errors in TW and TWR Estimates for Simulation I

�PA ¼ þ2� �PA ¼ �2�

Method �b �s �b �s

TW� .................... 0.179 0.162 0.354 0.115

�0.055 �0.058 �0.04 �0.02

TWR.................... 0.214 0.211 0.380 0.158

�0.031 �0.045 �0.042 �0.023

Notes.—Entries correspond to average bar and spiral estimates from SAs in
quadrant I (�15�, �45�, and �75�) with PA errors �PA ¼ þ2� and �2�. Es-
timates from both the traditional TW (asterisk indicates bar estimates using the
nominal number of slices for each SA listed in Table 2) and TWR methods are
listed.

Fig. 10.—Variation of xh i ¼
R X0

�X0
�x dx/

R X0

�X0
� dx with R0 ¼ ( y2i þ X 2

0 )
1=2

for five slices at SA ¼ 45
�
(dot-dashed line: y1 ¼ 0:0; dashed line: y2 ¼ �0:6;

solid line: y3 ¼ �0:3; dotted line: y4 ¼ 0:6; triple-dot–dashed line: y5 ¼ 0:9) in
the barred spiral simulation. The plateau range indicates a transition between
R0 � 1:0 and 1.5.
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Allowing that information from the full radial zone of the bar
is not manifest in this type of indicator, we here proceed to assess
the consequences for inner and outer pattern speed estimates
when the transition between the two patterns is misidentified.
Table 5 lists the TWRbar and spiral estimates for each of the SAs
studied in the previous sections, where we have limited the tran-
sition to 0:9 < rt < 1:5. At all SAs, this error of several bins in
rt causes an overestimation of the inner pattern speed. The outer
pattern speed, on the other hand, although slightly raised, is still
reassuringly accurate. We can interpret the inaccuracy in �b,
then, as the result of the misassociation of information from one
pattern to the other via equation (8), as discussed at the end of
x 4.2.1. In addition, we can attribute the greater inaccuracy in so-
lutions from quadrant II to the reasons discussed in x 4.2.1. Al-
though the subtleties in Table 5 are most likely specific to this
simulation, we emphasize that systematic pattern speed errors in-
troduced by transition misidentification are generic to the nature
of the calculation.

One of the greatest strengths of the TWR calculation is that
the transition is in principle a free parameter (within limits) and
need not be restricted to a single, predetermined value. We there-
fore recommend letting the results of the TWR calculation speak
for themselves: given sufficient resolution and reasonable mea-
surement errors, step model solutions with the most realistic
transition should be recognizable by howwell they reproduce the
actual vh i. Since the transition determines the separation of the
patterns by interpreting the contribution made to these integrals
by each, the natural result is the most accurate determination of
the pattern speeds possible.

4.3. Simulation II: Spiral Galaxy

In the previous section we showed that the TWR method is
capable of detecting and measuring a constant spiral pattern speed
that spans less than one-third of the disk. Here we test the aptitude
of the TWRmethod in measuring a radially varying spiral pattern
speed that subsists over a large radial zone. Since the strong spi-
ral surface density enhancement in this simulation (Fig. 11) has
only moderate azimuthal range like the spiral in x 4.2, we further
explore the likely limitations intrinsic to detecting spiral non-
axisymmetry with a given slice orientation.

The two-armed spiral featured in this simulation extends over
a large portion of the disk and is strong both in the surface
brightness distribution (Fig. 11) and as traced by departures from
axisymmetric rotation (streaming motions) in the velocity field
(Fig. 12). We estimate the extent of the spiral structure from that
of the dominant m ¼ 2 component in the Fourier power spec-
trum plotted in Figure 13. With the expectation, then, that the

spiral structure exists between 0:5P rP3:5, we restrict our spi-
ral pattern speed solutions to the radial zone rt < r < rc bor-
dered at the innermost and outermost radii by two independent
sets of unregularized bins. (For our models, 0 < rt < 1:0 and
2:8 < rc < 4:2.) Between the radii marked by the free (although
restricted) parameters rt and rc, we allow each spiral pattern
speed solution to vary with radius as an nth-order polynomial
where n ¼ 0 2.

The two sections of ‘‘place-holding’’ unregularized bins serve
to isolate the solution in the radial range of interest; by mini-
mizing errors due to either incorrectly incorporating or imposing
an ill-prescribed form to bins outside the radial zone of the spiral,

TABLE 5

TWR Estimates for Simulation I with a Misidentified Transition

SA

(deg) �b �s rt rc

75...................................... 0.376 0.193 0.9 5.7

45...................................... 0.348 0.152 0.9 4.8

15...................................... 0.367 0.191 1.2 4.5

�15 .................................. 0.336 0.186 1.2 4.5

�45 .................................. 0.336 0.212 1.2 5.7

�75 .................................. 0.313 0.200 1.2 5.7

Notes.—All bar and spiral pattern speeds listed here are estimated
from TWR solutions where rt is restricted to between 0.9 and 1.5. As in
Table 1, solutions are calculated using a�r ¼ 0:3 bin width. The fourth and
fifth columns list the connate estimates for rt and rc.

Fig. 11.—Face-on display of the spiral simulation’s surface brightness dis-
tribution projected with a �30� rotation about the z-axis, with orientation as in
Fig. 3.

Fig. 12.—Face-on display of the spiral simulation’s velocity field projected
with no rotation about the z-axis shown here with the kinematical major axis
running from left to right. Contours are spaced at �v ¼ 0:1.
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we reduce the introduction of inaccuracies to the spiral pattern
speed solution. The first, outermost section covers the radial zone
identified by visual inspection of the surface brightness (and sub-
stantiated by the Fourier power spectrum) where the dominant
spiral ceases to extend and where the weakness of the Fourier
components suggests a region without a noticeable pattern. As a
result, we consider this zone unsuitable for reliable extraction of
a pattern speed. (This last point can also be evidenced by tradi-
tional TW values from slices that pass solely through the outer-
most disk; the low counts there lead to a large degree of variation
in �p estimates from slice to slice). The second, innermost sec-
tion covers the radial zone inside rt � 1:0. Within this radius we
do not expect to be able to extract a realistic pattern speed solu-
tion since neither the morphology, velocity field, nor the power
spectrum indicates a departure from axisymmetry.

Lacking such evidence in the innermost radii, it would be en-
tirely possible to proceed without the use of unregularized inner
bins (as would be the case when the indicators for such ameasure
are perhaps less obvious). Indeed, allowing an independent reg-
ularized solution to exist at r < rt, the TWR calculation still per-
forms well; since these bins cover a rather small region of the
disk and thereby contribute minimally to the �2 through only the
innermost slices, we find that the spiral solution outside of this
region closely resembles that in the case where the inner bins are
unregularized. However, we proceed in the manner described
above with the expectation that, if only minorly, our spiral pattern
speed solution will be improved.

The actual pattern speed at the time of the snapshot shown in
Figure 11 as derived from the time evolution of the phase of the
m ¼ 2 component is plotted as a function of radius in Figure 14.
This plot confirms that within r � 1:0, the pattern speed is ill
quantified, with the values for �p at the innermost radii oscillat-
ing between positive and negative values outside of the vertical
range of the plot. At the largest radii, the pattern speed is charac-
terized by scatter presumably reflective of the lack of a notice-
able pattern in Figure 11.

The pattern speed between 1:0P rP3:0 to be reproduced by
our solutions shows high-order variation with radius. Inside of
r � 2:0 where the pattern speed is at a maximum (�p;max � 0:3),
the pattern seems to be unwinding, while at larger radii the pat-
tern speed decreases with increasing radius.

This behavior is only modestly indicated by traditional TW
estimates. In plots of vh i versus xh i (see Fig. 15 for a comparison
of plots generated at four SAs), adjacent slices trace out a figure-
of-eight shape characteristic of complex radial behavior (namely,
winding). However, the evidence for a variable best-fit slope (ex-
pected for a pattern speed that unwinds and winds) is not com-
prehensive or even readily apparent in all cases. (In fact, all slices
are seemingly well fitted with a single slope.) The radial depen-
dence of �p becomes more apparent on inspection of the varia-
tion of �p with slice position (see Fig. 16), but again, the radial
dependence gets smoothed out since �p for each slice is the re-
sult of averaging over all sampled radii. Furthermore, for the four
SAs shown in Figure 16, there is no single radial behavior im-
plied by all.
The TWR solutions, on the other hand, are capable of clearly

displaying high-order variation in �p(r). The average and rms
of the best-fit solutions with �r ¼ 0:2 bins at six different SAs
(�15�, �45�, and �75�) are plotted in Figure 17 between the
average values of rt and rc. For each SA, we find that the best-fit
solution is quadratically varying, correctly reproducing the wind-
ing behavior present in the actual pattern speed. However, the
parameters rt, rc, and the size and location of�p;max differ slightly
in each solution. These differences tend to reflect the influence
of morphology and slice orientation, as in x 4.2.1. The value of
the peak in�p(r), for example, is higher andmore pronounced in
solutions from quadrant II than quadrant I; at positive (negative)
SAs�p;max � 0:34 (0.27), on average. Together with differences
in the location where d�p(r)/dr ¼ 0 (which varies for the six
SAswithin the range 1:6 < r < 2:2), on averaging, the result is a
slightly undermeasured peak value occurring at r �1:8 (in ac-
cord with the actual location).
The vertical error bars on bins at large and small r similarly

reflect variations in the location of rc and rt with SA. Principally,
the solution suffers contamination from bins that perhaps yet con-
tain information from the inner or outer axisymmetric zones. But
we also find that solutions in quadrant II tend to decrease from
�p;max to a value rc that is further in by about 10% than for solu-
tions using slices at the perpendicular orientation. Nevertheless,
we find the average rt ¼ 0:8 � 0:2 and rc ¼ 3:2 � 0:3 to be in
agreement with the bounds of the spiral pattern indicated by the
disk surface density and its Fourier decomposition.

Fig. 13.—Fourier power spectrum of the spiral simulation’s surface bright-
ness distribution shown in Fig. 11. Modes up to m ¼ 4 are plotted as a function
of radius:m ¼ 1 (dotted line),m ¼ 2 (solid line),m ¼ 3 (triple-dot–dashed line),
and m ¼ 4 (dashed line).

Fig. 14.—Plot of �p as a function of radius for the spiral simulation as de-
rived from the time evolution of the m ¼ 2 component. Curves for � and � �
	/2 are shown in gray.
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Despite these PA-dependent effects, the values implied by the
average solution (�p;max,�p;minjr¼0:8, and�p;minjr¼3:2) are accu-
rate to within 5%, 11%, and 10%, respectively. That we have
correctly reproduced the high-order variation of �p(r), regard-
less of SA, however, is perhaps the most remarkable aspect of
the TWR solutions, even though the detectable variation is only
at the 30% level.

Naturally, our solution for�p(r) lends itself to pattern winding
time estimates. With the average values for the maximum and
minima implied by our solution, we can estimate the winding time
of the pattern according to


wind ¼ 2�= �p;max � �p;min

� �
: ð16Þ

For the outer spiral arm, for example, we estimate an average
time to wind 
̄wind ¼ 71:64, which is less than 10% from the ac-
tual winding time 
wind ¼ 78:53 observed from the time evolu-
tion of the simulation. [This, of course, assumes that �p(r) does
not vary over this time.]

As this simulation would indicate, even without uniform slice
coverage, although it may be slightly more difficult to determine
with confidence the radial domain of the pattern (given large er-
rors in rt and rc), the overall shape, or functional form, for �p(r)
can be ascertained. Of course, this is largely influenced by the
adopted measurement errors � vh i for each slice and the quality of

a priori information that can be gathered and employed.With larger
errors � vh i, for instance, the �2 criterion becomes less discrimi-
nating, and it may be difficult to distinguish between several
different radial dependencies for�p(r). In addition, without clear
evidence that limits where the spiral pattern terminates, we risk
misidentifying intrinsic radial variation. Indeed, if we restrict rc
to less than that implied by the best-fit solutions and search in-
stead for solutions at a second rc-�

2 minimum, then the pattern
speed solutions for all six SAs are constant between r̄t � 0:47
and r̄c � 2:47. As may be expected, the average value for this
constant pattern speed�p ¼ 0:236 � 0:051 is similar to that sug-
gested by traditional TWestimates, where�p;TW ¼ 0:207� 0:046
on average.

4.4. Simulation III: Double-barred Galaxy

In this section we address the use of the TWR method for the
purposes of nuclear bar detection and measurement using the
double-barred SB0 simulation pictured in Figure 18. In perform-
ing the regularized TWR calculation, we again act under the as-
sumption of multiple patterns in distinct radial zones. Our models
for �p(r) parameterize unique, constant pattern speeds for both
the primary and secondary bars, known to have pattern speeds of
�pb ¼ 0:23 and�sb ¼ 0:41, respectively. From inspection of the
surface density and its Fourier decomposition (forwhich the power
spectrum is plotted in Fig. 19), we associate the drop in power of

Fig. 15.—Plot of vh i vs. xh i for every other slice spaced at�y ¼ 0:4 for the spiral simulation at four SAs (clockwise from top left: 45�, 15�,�15�, and�45�). Each
slice is labeled by its distance from the galaxy major axis yi. Adjacent apertures in the �45� case are connected by a solid line; this SA shows the clearest signature of
winding. The dashed line in all plots is the best-fit straight line to all apertures shown.
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Fig. 16.—Plot of �p ¼ vh i/ xh i as a function of distance from the galaxy major axis y for the spiral simulation at the four SAs in Fig. 15 (clockwise from top left: 45
�
,

15�, �45�, and �15�). Triangles (circles) mark slices on the y > 0 ( y < 0) side of the galaxy.

Fig. 17.—Best-fit regularized solution and error bars from the TWR method
using�r ¼ 0:2 bins as applied to the spiral simulation averaged over six SAs. The
best solution is shown as a series of solid lines for each bin with dashed errors.
Errors for the transitions rt ¼ 0:8 � 0:2 and rc ¼ 3:2 � 0:3 are represented by
horizontal error bars at the top.

Fig. 18.—Face-on display of the double-barred simulation’s surface bright-
ness distribution projected without rotation about the z-axis, highlighting the
inner two bars.



the m ¼ 2 component at r � 0:8 and again at r � 3:0 with the
end of each bar. In step models for �p(r), then, we restrict the
secondary bar–to–primary bar and primary bar–to–disk transi-
tions towithin 0:4 < rt;1 < 1:2 and 2:5 < rt;2 < 3:2, respectively.

To isolate the bars from the rest of the disk, we extend the
quadrature to the edge of the surface density and employ our cut
procedure in light of the argument set forth at the end of x 4.2.2.
This is particularly compelling here since, despite the apparent
axisymmetry beyond the primary bar in this SB0 simulation, the
Fourier decomposition shows power in the m ¼ 2 mode beyond
r � 3:0, especially in the last third of the disk. If the asymmetry
in this radial zone (which appears only very weakly in the surface
density) is sustained by an ill-defined, nonunique, or perhaps un-
rigid pattern, for which the TW/TWR assumptions break down,
then associating it with a measurable pattern speed will likely
introduce regularization-induced bias to the solution for the inte-
rior patterns of interest.

Critically, asymmetry such as this may prevent clear integral
convergence beyond the primary bar end. So, too, can its pres-
ence in the integrals be expected to degrade the reliability of pat-
tern speed estimates for the structures of interest. Removing the
influence of the information in this outer radial zone by calculat-
ing the bins there without regularization is our best chance for
accurate pattern speed measurement. Given that the departure
from axisymmetry manifest by a small nuclear bar will be rela-
tively minor compared with that of other patterns in the disk, this
is especially relevant for accurate measurement of �s. In this
case, nonaxisymmetry on a comparable scale may easily upset
this structure’s contribution to the integrals and, if prescribed an
incorrect pattern speed model, may introduce consequences for
the innermost bins in solutions.

Our procedure for this simulation, however, does not quite in-
volve calculating without regularization all bins up to the patterns
of interest (i.e., to the end of the primary bar). As in all cases, but
particularly here where we are compelled to cut approximately
two-thirds of the disk, leaving a large portion of the total bins
unregularized may begin to reintroduce unamendable propagat-
ing noise. To reduce this risk, careful attention has been paid to
the development and testing of models that prevent the destabili-
zation of solutions. [Indeed, the appropriate balance between noise
and stability in models for�p(r) must be explored on a galaxy-by-

galaxy basis.] Here we find that the most stable and realistic mod-
els for�p(r) are those that include a third, constant pattern past the
end of the primary bar. From this we might infer that, although
weak and difficult to discern in Figure 18, there exists a spi-
ral pattern outside the primary bar, perhaps corresponding to the
m ¼ 2 component beyond r � 3:0, which remains clear but mod-
est out to r � 5:0. Indeed, we assume that the third minimum in
the power of the m ¼ 2 component at this radius corresponds to
the end of the spiral pattern and, moreover, since counts are low
in the rest of the disk, that the bins beyond r � 5:0 are best cal-
culated without regularization. We note, however, that we do not
necessarily expect to measure a realistic pattern speed in this third
radial zone.

Compiling this evidence for two bars and a possible spiral, we
search for the best-fit solutions parameterizing two constant pat-
tern speeds (one for the primary bar, one for the inner secondary
bar) out to the end of the primary bar, in addition to a third con-
stant pattern speed �s restricted to extend out to 4:3 < rc < 5:3.
We find that solutions generated in this manner provide much
more accurate estimates for the primary and secondary bars com-
pared with solutions that are either regularized over the full ex-
tent of the surface density or unregularized up to the end of the
primary bar.

For the purposes of further establishing favorable conditions
for nuclear bar detection, we adopt a small bin width�r ¼ 0:15
in the quadrature. As described in xx 4.2.1 and 4.2.4, the mis-
match by a fraction of a bin width or more between the actual
transition and that to which the solution is confined can have
consequences for both inner and outer TWR pattern speed esti-
mates. Real nuclear bars will need to be well resolved in order to
accurately separate the contributions of the two bars.

The secondary bar in this simulation is known to be nonrigidly
rotating; in Shen&Debattista (2007) andDebattista & Shen (2007)
the amplitudes and pattern speeds of secondary bars formed in
purely collisionlessN-body simulations through the introduction
of a rotating pseudobulge oscillate as the bars rotate through the
companions inwhich they are nested. In Shen&Debattista (2007)
TWestimates of the secondary bar pattern speed measured using
bulge-only kinematics (the bulge supports the nuclear bar alone
and a primary bar contribution need not be accounted for in the
TW integrals) are subject to marked errors consistent with an ori-
gin in nonrigid rotation. These errors result in estimates of �sb too
high on one side of the galaxy and too low on the other, in accord
with being a manifestation of the oscillations driving radial pulsa-
tions that contribute with different signs on the two sides of the
galaxy. Cancellation between measurements from both sides of
the galaxy in global regularized solutions reduces the effect of
the oscillations. In the discussion to follow, our focus is on sources
of error in the TWR calculation other than this intrinsic effect.

The TWR estimates from solutions with�r ¼ 0:15 bins at six
SAs (�15

�
,�45

�
, and�75

�
) are listed in Table 6, and the aver-

age and rms for this SA range are shown in Figure 20. Compared
with solutions generated using�r ¼ 0:3 bins in the calculation,
these solutions are much more stable and accurate; at less than
8% from their actual values, the comprehensive primary and sec-
ondary bar pattern speeds evidently benefit from the integrity of
the calculated transitions between patterns (we find rt;1¼ 0:75 �
0:09, rt;2 ¼ 3:0 � 0:21, and rc ¼ 4:6 � 0:33).

Although the TWR estimates in Figure 20 are accurate, the
rms in each suggests 8%–13% error on the part of the method. In
addition to the intrinsic nonrigid rotation error expected for the
secondary bar measurement, this may yet indicate the slight mis-
designation of transitions between patterns, andwe can also assume
that (although we do not necessarily consider its measurement

Fig. 19.—Fourier power spectrum of the double-barred simulation’s surface
brightness distribution shown in Fig. 18. Modes up tom ¼ 4 are plotted as a func-
tion of radius:m ¼ 1 (dotted line),m ¼ 2 (solid line),m ¼ 3 (triple-dot–dashed
line), and m ¼ 4 (dashed line).
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realistic) the third measured pattern speed has a nontrivial influ-
ence on the inner pattern speeds, as must�pb on�sb, for instance.

With so many free parameters in our model (more than in any
other used in this paper), identifying unequivocally the depen-
dence of each on the others is difficult (indeed, the rms in each
estimate likely reflects the combined consequence of many such
interdependencies). As in previous sections, however, we can
begin to understand the largest source of variability in the esti-
mates from SA to SA by considering the influence of morphol-
ogy and slice orientation on the solutions. If we consider that the
major axes of the two bars are oriented at�45� from one another
at this time step (that is, with the secondary bar aligned along the
x-axis, the primary bar is aligned along the line y ¼ x, or in the
Shen & Debattista [2007] convention,�� ¼ 45�), then slices at
�45� are oriented along the primary bar minor/major axis. In this
case, even in the presence of the secondary bar, vh i and xh i for the
inner primary bar crossing slices fluctuate noisily about zero.

This behavior is more than enough to prevent accurate TW
estimates for the primary bar (which Rand & Wallin [2004] find
are less reliable when bars are aligned within�20

�
of a principle

axis), and so it is perhaps not surprising that our TWR estimates
at �45� SAs show rather large inaccuracies. However, what we
find requires slightly more interpretation: it is the secondary bar
estimate, and not �pb, that is compromised.

Unlike the results in x 4.2, with which we could argue that the
regularized TWR method is, in principle, fairly equipped to ac-
commodate any alignment of patterns (and where even slices at
�15� from the bar axis return accurate TWR estimates), here we
are not only dealing with more model parameters (and their in-
trinsic covariance), but the innermost pattern now has a much
smaller extent than the structures in the disk. Consequently, the
secondary bar occupies the smallest fraction of bins in the inner-
most slices where, moreover, the errors �i are the largest. Pre-
sumably, in this exploitable state the secondary bar estimate is
sacrificed for the primary bar �pb in the regularized calculation;
at SA ¼ �45

�
, our measurement of �sb is overestimated by

�25%, while �pb is good to within 11%, on average. (We can
assume that such imprecision also reflects the effect of the sec-
ondary bar’s nonrigid rotation.) At other slice orientations where
the primary bar is more favorably sampled, the trade-off is less
severe (although modestly PA dependent).

An impromptu calculation using particles in the bulge only
(motivated by the Shen & Debattista [2007] strategy) seems to
confirm the influence of the primary bar in the TWR calculation
at SA ¼ 45�. The error in our lone estimate �sb ¼ 0:42 in this
case is significantly less than when the primary bar is present and

also comparable to that in bulge-only estimates at other SAs; for
the three SAs in quadrant II tested, we find �sb ¼ 0:43 � 0:01.
Even if the TWR method cannot accurately measure the pat-

tern speed of a pulsating nuclear bar (aside from with global reg-
ularized solutions, in particular), it is nevertheless appropriate for
use in characterizing and constraining�sb, especially in the pres-
ence of a primary bar. The comparative worth of TWR solutions
can be deduced in light of the distinction between the traditional
TW and TWR methods. Our TWR pattern speed measurement
for the primary bar is comparable to that from the traditional TW
calculation; using slices covering jyj � 2:25 (such that the bar
contribution is maximal in all slices), the TW method returns
�pb;TW ¼ 0:214 � 0:011. The TWR secondary bar estimate, on
the other hand, greatly improves on the TW estimate �sb;TW ¼
0:338 � 0:149 available using slices covering jyj � 0:6.
Since the nuclear bar appears in only a very small number of

slices and its contribution is, moreover, easily overwhelmed in
the extended TWintegrals, the TWmethod onlymodestly recov-
ers�sb. In the TWR calculation, however, the few bins that cover
the nuclear bar are supplied with large weights Kij compared
with the rest of the information along each slice. Together with a
suitable bin width, this effectively isolates information from
throughout the nuclear bar extent from that of all other patterns in
the disk. The quality with which �sb can be constrained then de-
pends on how well the contribution from these other patterns is
identified and removed from slices intersecting the nuclear bar;
moreover, it relies on regularization over both sides of the galaxy
to construct a global solution.
Aside from the unavoidable error introduced by the nonrigid

rotation of nuclear bars expected from N-body simulations, from
our current study it seems likely that similar calculations may be
limited according to the degree of resolution and the relative size
of the secondary bar. That is, the former dictates the precision
with which the secondary bar–to–primary bar transition can be
determined, and the latter sets the leverage supplied by the sec-
ondary bar to the �2. Furthermore, given that the measurement
of an inner, nuclear bar pattern speed is subsequently largely af-
fected by how well the other patterns present in the disk can be

TABLE 6

TWR Estimates for Simulation III

SA

(deg) �sb �pb �s rt;1 rt;2 rc

75............................. 0.420 0.231 0.146 0.75 3.15 4.35

45............................. 0.548 0.278 0.178 0.75 3.15 4.35

15............................. 0.407 0.231 0.063 0.6 2.7 4.8

�15 ......................... 0.404 0.264 0.087 0.75 2.7 5.25

�45 ......................... 0.477 0.259 0.233 0.9 3.15 4.35

�75 ......................... 0.375 0.225 0.028 0.9 3.15 4.5

Actual ...................... 0.41 0.23 . . . 0.8 3.0 5.0

Notes.—The secondary bar, primary bar, and spiral pattern speeds listed here
are estimated from TWR solutions calculated using a �r ¼ 0:15 bin width for
a range of SAs. The last three columns list the connate estimates for rt;1, rt;2,
and rc. Values for the actual pattern speeds are shown in the last row.

Fig. 20.—Best-fit solution and error bars from the TWRmethod as applied to
the double-barred simulation averaged over six SAs using�r ¼ 0:15 bins. The
secondary bar�sb ¼ 0:439 � 0:058, primary bar �pb ¼ 0:248 � 0:02, and spiral
�s ¼ 0:123 � 0:07 are shown as solid lines with dashed errors. Horizontal error
bars at the top indicate the dispersion in the secondary bar–to–primary bar tran-
sition rt;1 ¼ 0:75 � 0:09, the primary bar–to–spiral transition rt;2 ¼ 3:0 � 0:21,
and spiral termination radius rc ¼ 4:6 � 0:33.
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measured, success with the TWR method requires appropriate
models for �p(r) that account for such concerns.

5. SUMMARY

5.1. Caveats in Applications to Real Galaxies

The successes of the TWR method as applied to simulated
data should be obtainable with real galaxies, provided that ade-
quate attention is paid to several considerations. Since the cal-
culation foremost requires integration along slices parallel to the
galaxy major axis that reflect information from all patterns of in-
terest in the disk, observations must be able to present a number
of these. As governed by the resolution or sampling of the data,
the placement of these slices must be able to define a quadrature
wherein the position y of the outermost slice corresponds to that
of the last matrix element along the slice requiring the largest
limit of integration Xmax for integral convergence; when conver-
gence can be reached only clearly at the map boundary (perhaps
far beyond the extent of the patterns), this is essential for cor-
rectly accounting for all information along each slice.

Establishing the slice positions and orientation for an accurate
quadrature also clearly requires superior knowledge of kinematic
and morphological parameters. In general, the same restrictions
to the quality of input data in traditional TWcalculations apply to
the TWR method. As described in x 4.2.3, errors in the assumed
PA that impair TWestimates can also introduce considerable in-
accuracy to the TWR solutions. The inclination angle of the disk
must also be well determined and should be preferably restricted
to onlymoderate values (which, beyond the observational require-
ments of the TW method, will keep errors from corrupting the
association of information into accurate radial bins).

Additionally, althoughmore easily overcome in traditional TW
estimates (Merrifield & Kuijken 1995), errors in the systemic
velocity and galaxy center might prove critical for the TWR so-
lutions since each side of the disk provides an independent so-
lution for �p(r). Care must be taken not to impair the prevailing
symmetry along each slice, given that each integral bears more
than one estimate. The incorrect placement of radial bins accord-
ing to a misassigned galaxy center position, for example, could
significantly over- or underestimate the actual pattern speed and
moreover make assessment of the true radial variation unlikely.

The regularization procedure developed here itself makes fur-
ther demands on the quality and amount of information neces-
sary to perform the calculation. But by keeping the amount of
information beyond that required of the TW method to a mini-
mum, and using standard diagnostics such as Fourier decom-
position, the requisite set of a priori assumptions can be invoked
quite reliably. As long as the information is accessible, requiring
at the least theoretical motivation to develop testable models, and
limited in principle only by the quality of information fromwhich
it is to be gathered, then the regularization should proceed without
impediment.

Of course, unlike the simulated galaxies studied here where
there is plenty of signal throughout the disk, observations of real
galaxies may present sensitivity issues. While regions of low
signal-to-noise ratio in the outer disk can be superseded using the
cut procedure developed here, high-quality information from the
rest of the disk is an obvious priority for the method; the depar-
tures from axisymmetry induced by all patterns present in the disk
must be clearly detectable. Not only does the calculation depend
on the presence (or lack) of these signatures, in both the surface
density and the velocity field, but the mere identification of the
number and domain of patterns is critical for developing appro-
priate models for �p(r).

The latter necessity may be hard met since, for instance, it will
be rare to observe galaxies with surface densities that can be
Fourier-decomposed as cleanly as is possible with simulated gal-
axies. Furthermore, unlike simulations, it is impossible to es-
tablish whether or not there exists more than a single pattern
speed at each measured radius in real galaxies. Since the models
developed with regularization here are incompatible with non-
unique pattern speeds, for real galaxies, the choice of when and
where to consider a transition or to keep solutions unregularized
may be based on a more qualitative assessment of where clear
structure ends.

Inevitably, the combination of the above considerations (re-
lated, overall, to the quality of the data) will determine the extent
to which the model for the true radial behavior of �p(r) can be
differentiated from other models. That is, the �2 criterion with
which we judge the goodness of solutions becomes less discrim-
inating the larger the measurement error � vh i. Since the adopted
measurement error � vh i for each slice used in the calculation and
in the �2 estimator must necessarily incorporate observational
errors based on random noise in the data, with severe enough
errors different model solutions from real, imperfect data may be
indistinguishable.

In addition, systematic errors ( likely dominated by PA uncer-
tainty) will undeniably challenge the accuracy of solutions. In all
applications of the method it is critical to assess the influence of
these errors through direct tests of the sensitivity of solutions to
departures from the nominal values of PA, inclination, and kine-
matic center, for instance. Clearly, this makes 2D coverage de-
sirable; here 2�–3� uncertainties in the PA alone are shown to
introduce around 15% error in measurements of �p(r) for the
barred spiral simulation.

Insufficient resolution or sampling may also impair TWR so-
lutions from real galaxies. A large adopted bin width not only
limits the detectable radial variation in�p(r) but also restricts how
well multiple patterns can be separated in the resultant quadrature;
a mismatch between the actual transition and that to which the
solution is confined can have consequences for the estimates
of both inner and outer patterns. Naturally, depending on the
models to be tested and relative size of the disk, a resolution-
constrained bin width is not guaranteed to impair solutions for all
galaxies.We nonetheless foresee that the only trueway to preserve
the integrity of solutions is with high-resolution observations.

Data cubes lend themselves well to analysis with the TWR
method, since, unlike long-slit spectroscopic observations, the
galaxy PA, inclination, systemic velocity, and (kinematic) center
can be derived with errors from the data using a tilted ring anal-
ysis on the first moment of the cube. In addition, multiple slices
can be defined with a single observation. So between radio and
submillimeter investigations of spiral structure, for instance, and
IFU spectroscopy, with which double-bar systems (and eventu-
ally double-barred spirals, given larger, more sensitive IFUs) can
be studied, applications of the TWRmethod could be extensive.

Of course, like all applications of the TW method, the ob-
served tracer must be found to obey continuity and the relation
between the intensity of the tracer and the surface density must
be linear or well determined everywhere. Reviews of several
possible tracers argued to suitably obey the TW continuity re-
quirement can be found throughout the literature, but we note
here that the work of Gerssen & Debattista (2007) studying the
effect of dust on TWmeasurements of bars may find meaningful
extension in future TWR studies of multiple patterns in late-type
galaxies. There, model dust lane features associated with bars
introduce errors on the order of 20%–40% (Gerssen & Debattista
2007). In addition to these errors, TWR solutions could possibly
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be prone to increased error from spiral dust lanes at larger radii.
Although it is beyond the scope of this work to make a detailed
assessment of the sensitivity of TWR solutions to dust, we argue
that such noise could well be mitigated through the use of reg-
ularization and expect no greater effect in TWR measurements
than in TW, which, moreover, will be apparent with the use of
only optical tracers.

In the immediate future, we plan to apply the TWR method
to several high-resolution BIMA SONG CO observations of
molecule-dominated galaxies to search for spiral winding, rela-
tions between bar and spiral pattern speeds, and spiral-spiral mode
coupling. (These observations include single-dish data and there-
fore do not suffer from missing flux, which would be a violation
of the continuity requirement.) For those galaxies with interstel-
lar media not dominated by molecular gas, we plan to combine
the CO with H i data to make total column density maps (assum-
ing that the ionized component is negligible). Since the CO-H2

conversion factor is critical in combining the CO and H i maps
(and, of course, in establishing molecule dominance in the for-
mer case), it will be necessary to test the sensitivity of the TWR
method to the adopted conversion factor for such combinations.

In addition, since warped disks (common inH i) are a violation
of the TWassumptions, we will also perform tests to determine if
our cutoff scheme can be used to circumvent the warp and thereby
extract solutions from the rest of the disk. For these applications
of the TWR method, we plan to construct measurement errors �
for each slice that reflect uncertainties related to the flux cutoff
chosen in creating the moment maps. The effect of PA and other
systematic errors will be assessed by testing the sensitivity of
solutions to departures from the nominal values.

5.2. Applying the TWR Method

Although in the interest of testing our strategy for each sim-
ulated galaxy is somewhat tailored to its unique properties, with
the above caveats in mind our studies have enabled us to develop
a general and reasonably objective prescription for applying the
regularized TWR calculation:

1. Establish the bin width and the corresponding number of
slices (not necessarily uniformly spaced) that are required to achieve
converged integrals using anN ; N quadrature. For the purposes
of measuring multiple patterns in a single disk, this will likely
extend to the map boundary.

2. Compile a priori information by inspecting the surface den-
sity, its Fourier decomposition, and the velocity field for indica-
tions of patterns and to establish the expected number and domain
of measurable pattern speeds. This should include the identifica-
tion of regions in the disk susceptible to regularization-induced
bias.

3. Develop theoretically and/or observationallymotivatedmod-
els that parameterize �p(r) according to the a priori information.

4. Incorporate measurement errors into a single � vh i (and �)
for each slice. These should represent uncertainties in the adopted
intensity noise level and/or other random noise–related errors;
systematic errors are preferably determined through direct test-
ing (see item 9).

5. Develop the weighting scheme for a reduced �2 estimator
that accounts for the total degrees of freedom for themodels to be
tested. This should reflect expectations for which slices, if any,
are most critically to be reproduced by the models.

6. Generate preliminary solutions for themodels. At this point,
the degree of regularization required to return solutions according
to type should be explored.

7. With finalized solutions, use equation (7) to generate a com-
plete set of vh i for each and calculate the corresponding �2

� .
8. Use the �2

� to identify the best-fit solution.
9. Test the sensitivity of the results to other systematic effects

peculiar to the observation, e.g., adopted PA and/or the CO-H2

conversion factor, for instance.

6. CONCLUSIONS

In this paper we have shown that regularizing the TWR cal-
culation is an effective means of smoothing intrinsically noisy
solutions for more precise measurement of �p(r). Specifically
(barring a large, limiting resolution), regularization admits the
use of a much smaller bin width than that required to achieve
comparable smoothness in the unregularized calculation. This af-
fords improved assessment of radial variation, as well as more ac-
curate determination of the transitions between multiple pattern
speeds (and thus of the values of the pattern speeds themselves,
in principle). Moreover, with the regularized TWR calculation,
different theoretically and observationally motivated models for
the radial dependence of �p(r) can be tested in fairly short time
and with only the minor addition of information compared to the
unregularized TWR and TW methods.
With a simple scheme for generating nth-order polynomial so-

lutions that can be incorporated into step models, we have shown
that the TWR method can be used to parameterize the radial do-
mains of multiple pattern speeds. Together with a priori informa-
tion identifying zones in the disk that may be incompatible with
measurement (because they either are characterized by low signal-
to-noise ratio or show no evidence for a pattern), we can fur-
ther constrain the extent of patterns while optimally reducing
regularization-induced bias in pattern speed solutions.
As applied to three simulated galaxies, we find that the TWR

method developed in this manner performs with a high degree
of accuracy (with less than 15% error) both in measurement and
in extracting information about the true functional form for the
pattern speed. Tests on a simulation of a barred spiral galaxy in-
dicate that not only can the constant pattern speed for a relatively
weak spiral be reliably reproduced, but information about both
the pattern speed and the radial extent of the bar pattern can also
be extracted. ( Indeed, we find that the bar pattern speed estimate
is strengthened by the proper use of information from beyond the
bar end.) And although the bar pattern speed estimates are highly
susceptible to systematic errors (with PA errors introducing the
largest uncertainty to TWR pattern speeds, as with TWestimates),
we find that the identification of the transition between the two is
relatively stable.
The TWRmethod can also be effectively employed to measure

patterns that are winding in nature. In a simulation of a two-armed
spiral, the best-fit TWR solutions from several slice orientations
correctly reproduce the high-order radial variation of the pattern
speed, despite modest indication that not all orientations supply
the same authority (this, of course, would seem to depend on the
morphology of this spiral, in particular). Indeed, although the TWR
method can, in principle, handle any (presumably random) align-
ment of patterns, in all of the simulations studied, slice orienta-
tions that provide the most uniform coverage of the patterns are
preferred. This is of particular importance for nuclear bar pattern
speed measurement, as found in tests of the method on a double-
barred simulation. Since the innermost bins that provide the fore-
most leverage on the nuclear bar are also the most susceptible to
errors from throughout the disk, confident measurement requires
all other patterns to be well constrained.
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In principle, comparable accuracy should be achievable on
real galaxies. However, these tests do not constrain how well the
TWR method can perform under severe observational limitations
that may commonly arise. Not only can determinations of the PA,
inclination, and dynamical center be subject to considerable er-
rors given low-quality data, but identifying constraints on the pat-
terns present in the disk to be incorporated into models for �p(r)
could prove challenging. In addition, although regularization can
reduce the impact of noise on solutions, large measurement er-
rors for each slice could make discriminating between several
possible models for�p(r) difficult. And most critically, since the
nature of the numerical calculation relies on a relatively small
bin width to achieve its greatest accuracy, without high resolu-
tion, some observations may not afford practical solutions.

Nevertheless, if restricted to high-resolution observations with
adequate sensitivity, and given radially stable kinematic param-
eters, TWR solutions can be used to study the connection be-
tween multiple patterns and the nature of spiral winding. So, too,

can we expect progressively more satisfactory applications of
the method; although the number of galaxies to which the method
can be successfully applied is limited by the current generation
of instruments, in the future, larger IFUs, ALMA, and eventually
SKA should yieldmuch higher quality data with larger areal cov-
erage and higher angular resolution. This prospect in itself should
warrant future studies with the TWR method.
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