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ABSTRACT
Lopsidedness is common in spiral galaxies. Often, there is no obvious external cause, such

as an interaction with a nearby galaxy, for such features. Alternatively, the lopsidedness may

have an internal cause, such as a dynamical instability. In order to explore this idea, we have

developed a computer code that searches for self-consistent perturbations in razor-thin disc

galaxies and performed a thorough mode-analysis of a suite of dynamical models for disc

galaxies embedded in an inert dark matter halo with varying amounts of rotation and radial

anisotropy.

Models with two equal-mass counter-rotating discs and fully rotating models both show

growing lopsided modes. For the counter-rotating models, this is the well-known counter-

rotating instability, becoming weaker as the net rotation increases. The m = 1 mode of the

maximally rotating models, on the other hand, becomes stronger with increasing net rotation.

This rotating m = 1 mode is reminiscent of the eccentricity instability in near-Keplerian discs.

To unravel the physical origin of these two different m = 1 instabilities, we studied the

individual stellar orbits in the perturbed potential and found that the presence of the perturbation

gives rise to a very rich orbital behaviour. In the linear regime, both instabilities are supported

by aligned loop orbits. In the non-linear regime, other orbit families exist that can help support

the modes. In terms of density waves, the counter-rotating m = 1 mode is due to a purely

growing Jeans-type instability. The rotating m = 1 mode, on the other hand, grows as a result

of the swing amplifier working inside the resonance cavity that extends from the disc centre

out to the radius where non-rotating waves are stabilized by the model’s outwardly rising Q
profile.

Key words: instabilities – galaxies: kinematics and dynamics – galaxies: spiral – galaxies:

structure.

1 I N T RO D U C T I O N

The stellar and/or gaseous discs of spiral galaxies are often affected

by large-scale asymmetries. About half of all late-type galaxies show

a lopsided structure that affects the whole disc (Richter & Sancisi

1994; Haynes et al. 1998). Based on near-infrared images of a sam-

ple of 149 disc galaxies, Bournaud et al. (2005) find that a large

fraction of them have asymmetric stellar discs. The strength of the

lopsidedness does not correlate with the presence of companions

but, instead, correlates with the presence of bars and spiral arms.

They explore three different causes for the lopsidedness: galaxy in-

teractions, galaxy mergers, and gas accretion. These authors favour

the latter explanation, which indeed can trigger strong lopsidedness

if the gas in-fall is sufficiently asymmetric. Angiras et al. (2006)
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analysed H I surface density maps and R-band images of 18 galax-

ies in the Eridanus group. All galaxies showed significant lopsided-

ness in their H I discs. Where the stellar and gaseous discs overlap,

their asymmetries are comparably strong. Since the Eridanus group

galaxies are more strongly lopsided than field galaxies, these au-

thors conclude that tidal interaction in the group environment may

contribute to generating lopsidedness in disc galaxies. Swaters et al.

(1999) studied kinematic lopsidedness in two spiral galaxies and

argued that it may be related to lopsidedness in the potential. Alter-

natively, the stellar disc may lie off-centre in the halo’s gravitational

potential well and spin in a sense retrograde to its orbit about the

halo centre (Levine & Sparke 1998). Lopsided structures are not the

prerogative of disc galaxies alone. In some nucleated dwarf ellip-

tical galaxies, for instance, the nucleus is displaced with respect to

the centre of the outer isophotes (Binggeli, Barazza & Jerjen 2000).

While some authors regard these displaced nuclei as being globular

clusters projected close to the galaxy photocentre (Côté et al. 2006),

in some cases, such as the Fornax dwarf elliptical FCC046, there are
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clear indications that the nucleus is an integral part of the galaxy’s

stellar body and is displaced by a mechanism that affects the whole

galaxy (De Rijcke & Debattista 2004).

Sellwood & Valluri (1997) used N-body simulations to investigate

the stability of a family of oblate elliptical galaxy models and found

that a strong lopsided instability occurs in models with small radial

anisotropy and strong counter-rotation. This instability may cause

lopsidedness in stellar systems with no or small net rotation, such as

dwarf ellipticals (De Rijcke & Debattista 2004). Bertola & Corsini

(1999) compiled a list of several types of counter-rotation in galaxies

of different morphological type. They regard counter-rotation of

stellar versus stellar discs as the prevailing type of counter-rotation

since it is the end state of a galaxy with an embedded counter-rotating

star-forming gas disc.

Rubin, Graham & Kenney (1992) discovered in the S0 galaxy

NGC 4550 two distinct stellar components rotating in opposite di-

rections. Another example is the normal Sab galaxy NGC 7217

(Merrifield & Kuijken 1994). Vergani et al. (2007) present the case

of NGC 5713, a Sbc spiral galaxy in which 20 per cent of the stars

are on retrograde orbits. Their data suggest that NGC 5713 accreted

neutral gas from its surroundings on retrograde orbits. This gas was

subsequently converted into stars in a counter-rotating disc. Less

than 10 per cent of all S0s host counter-rotating stellar popula-

tions while counter-rotating gas is found in roughly one-quarter of

them (Kuijken, Fisher & Merrifield 1996). Kannappan & Fabricant

(2001) find four counter-rotators among a sample of 17 elliptical and

lenticular galaxies. They find no counter-rotation among 38 Sa-Sbc

galaxies.

An axisymmetric galactic disc perturbed by a constant lopsided

halo potential causes a net lopsided distribution in the disc, opposite

to the perturbation halo potential (Jog 1997, 1999). Tremaine & Yu

(2000) suggest that counter-rotation can be produced when a triaxial

halo with an initially retrograde pattern speed slowly changes to a

prograde pattern speed. This is a situation that probably does not

occur very often. Moreover, this mechanism requires evolution on

long time-scales of the order of ∼1010 yr. Overall, counter-rotation

is detected only rarely in disc galaxies. Hence, the lopsidedness

observed in so many disc galaxies is most likely not caused by

counter-rotation.

In this paper, we investigate the role played by instabilities in gen-

erating lopsidedness in isolated disc galaxies using a semi-analytic

matrix method developed by Vauterin & Dejonghe (1996). More

specifically, we want to explore whether lopsided instabilities can

be triggered in fully rotating disc galaxies. In the next section, we

introduce the formalism underlying the computer code that we de-

veloped to analyse the stability of a given dynamical model for a

disc galaxy. In Section 3, we present the unperturbed toy galaxy

models whose stability is analysed in Section 4. We investigate un-

der what physical circumstances (i.e. degree of counter-rotation and

orbital anisotropy) lopsided structures can spontaneously grow in

these disc galaxy models. In Section 5, we give a physical explana-

tion for the self-consistent growth of lopsided structures, based on

the response of individual stellar orbits to the growing instability.

We summarize our conclusions in Section 6.

2 S E A R C H I N G F O R I N S TA B I L I T I E S

We have developed a computer code to analyse the stability of razor-

thin stellar discs embedded in an axisymmetric or spherical dark

matter halo. The halo is assumed to be dynamically too hot to de-

velop any instabilities. This inert halo only enters the calculations

by its contribution to the global gravitational potential. We only con-

sider the stellar component of the disc and neglect the dynamical

influence of gas and dust.

We describe an instability as the superposition of a time-

independent axisymmetric equilibrium configuration and a pertur-

bation that is sufficiently small to warrant the linearization of the

Boltzmann equation. The equilibrium configuration is characterized

completely by the global potential V0(r) and the distribution func-

tion f 0(E, J), with binding energy E and angular momentum J. A

general perturbing potential can be expanded in a series of normal

modes of the form

V ′(r , θ, t) = V ′(r )ei(mθ−ωt), (1)

with a pattern speed �(ω)/m and a growth rate �(ω) that, owing to

the linearity of the relevant equations, can be studied independently

from each other. We write the response of the distribution function

to a perturbation as

f (r , θ, vr , vθ , t) = f0(E, J ) + f ′(r , θ, vr , vθ , t). (2)

The evolution of the perturbed part of the distribution function is

calculated using the linearized collisionless Boltzmann equation:

∂ f ′

∂t
− [ f ′, E] = [ f0, V ′]. (3)

We rewrite the right-hand side of the last equation as

[ f0, V ′] = −∇v f0 · ∇r V ′

= −
(

∂ f0

∂E
∇vE + ∂ f0

∂J
∇vJ

)
· ∇r V ′

= ∂ f0

∂E
v · ∇r V ′ − ∂ f0

∂J

∂V ′

∂θ
. (4)

We also know that

∇r V ′ · v = dV ′

dt
− ∂V ′

∂t
. (5)

With this last identity, equation (3) becomes

∂ f ′

∂t
− [ f ′, E] = ∂ f0

∂E

dV ′

dt
+ i

(
ω

∂ f0

∂E
− m

∂ f0

∂J

)
V ′. (6)

The left-hand side of equation (6) is simply the total time deriva-

tive of f ′ along an unperturbed orbit. If we integrate equation (6)

along the unperturbed orbits, we immediately obtain the response of

the distribution function to the perturbing potential given by equa-

tion (1):

f ′(r 0,v0; t0) = ∂ f0

∂E
V ′(r 0; t0) + i

(
ω

∂ f0

∂E
− m

∂ f0

∂J

)

×
∫ t0

−∞
V ′(r )ei(mθ−ωt) dt . (7)

The integral in equation (7) converges if the perturbation disappears

for t → −∞ and is growing sufficiently fast in time [�(ω) > 0].

Along an unperturbed orbit, the radial coordinate r is a periodic

function of time with angular frequency ωr , just like vr and vθ .

Because the mean value of vθ can be different from zero, θ will be

the superposition of a periodic function θ p(t) and a uniform drift

velocity ωθ :

θ = ωθ t + θp(t). (8)

We separate the part of the integrand in equation (7) that is periodic

with frequency ωr from the aperiodic part and expand it in a Fourier

series:

V ′(r )ei(mθ−ωt) = I (t)ei(mωθ −ω)t

= ei(mωθ −ω)t

∞∑
l=−∞

Ile
ilωr t . (9)
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The coefficients Il are given by

Il = 1

T

∫ T

0

I (t)e−ilωr t dt, (10)

where the integration extends over half a radial period, starting at

apocentre at t = 0.

The first term of the right-hand side of equation (7) is rewritten

as

∂ f0

∂E
V ′(r 0; t0) = ∂ f0

∂E
ei(mθ0−ωt0)

∫ 0

−∞
d
[

I (t)ei(mωθ −ω)t
]

= ∂ f0

∂E
ei(mθ0−ωt0)

∞∑
l=−∞

Il . (11)

The orbits are integrated in the unperturbed potential using a

leapfrog method. Instead of using E and J, orbits in the unperturbed

potential are catalogued by their apocentre and pericentre distances,

denoted by r+ and r−, respectively. The sense of rotation is indicated

by the sign of r−. The grid of the orbit catalogue is given by (r+,

r−) ∈ [0, rmax] × [−r+, r+]. We use a grid of 100 × 200 cells.

For every orbit, ωr and ωθ are determined, the Fourier expansion

(9) is performed up to the order of lmax = 50, and the coefficients

are stored. If we want to calculate the response of the distribution

function in the point (r 0, v0) in phase space at time t0, we choose an

orbit from the catalogue with the correct integrals of motion (i.e. r+
and r−) but passing through its apocentre at t = 0 so the actual orbit

has an offset in time t(r0) and azimuth θp(r0) that must be taken into

account. Therefore, we also store a tabulation of t(r) and θp(r).

The response of the distribution function to the perturbation now

assumes the following concise form:

f ′(r 0,v0; t0) = ei(mθ0−ωt0)

×
∞∑

l=−∞
Il

(lωr + mωθ ) ∂ f0
∂E − m ∂ f0

∂J

lωr + mωθ − ω
ei[lωr t(r0)−mθP (r0)].

(12)

Because we are searching for instabilities, and thus �(ω) > 0, we

do not have to be concerned by the presence of resonances. We can

compute the perturbed density by integrating the perturbed distri-

bution function over the velocities up to the escape velocity. For

self-consistent perturbations, the gravitational potential produced

by this response density should equal the original perturbing poten-

tial. Using the matrix method developed by Vauterin & Dejonghe

(1996), the search for a self-consistent mode of the order of m is

reduced to an eigenvalue problem. We adopt the same basis set of

potential-density couples as Vauterin & Dejonghe (1996). The re-

sponse density generated by each of these basic potentials can be

expanded in terms of the basic density distributions. This gives rise

to a matrix C(ω) that contains the coefficients of these expansions.

Self-consistent perturbations have the unique property that they have

a pattern speed and growth rate ω for which C(ω) has an eigenvalue

λ = 1. The corresponding eigenvector contains the coefficients of

the expansion of the response density in terms of the base set of

density distributions. Thus, for a self-consistent perturbation of the

order of m we are left with the numerical search within the complex

plane for a value of ω for which C(ω) has a unity eigenvalue, some-

thing that can be accomplished very efficiently using bisection. For

a more detailed description of the method, we refer the reader to

Vauterin & Dejonghe (1996).

3 T H E U N P E RT U R B E D M O D E L S

A dynamical model for a disc galaxy embedded in a dark halo is

specified by the global potential of the system and the distribution

Figure 1. Rotation curve of the unperturbed potential. The dotted line rep-

resents the contribution of the disc.

function of the stellar disc. For all the models that will be analysed

in this paper, we have chosen the same unperturbed potential and

unperturbed density but different distribution functions. The unper-

turbed potential in the plane of the disc is given by

V0(r ) = G M√
1 + r 2

+ G M√
1 + ( r

4.4
)2

, (13)

with M = 1010 M� and r expressed in kpc. This potential produces

a rotation curve that rises near the centre and becomes flat farther

out in the disc, as can be seen in Fig. 1. For the unperturbed density

profile, we choose an approximately exponential profile:

ρ0 = αe−1.3
√

0.2+r2
. (14)

The mass of the disc, and thus the mass of the halo, is determined by

α. We impose an outer limit at rmax = 6 kpc. We have chosen α so

that the proportion H/D of the total mass inside the outer radius rmax

for the halo and the disc is about 2.5. The disc is truncated by de-

manding that the distribution function f 0(E, J) is zero for orbits that

venture outside this outer limit. The distribution function is written

as a linear combination of a basic set of distribution functions. The

coefficients of this expansion are determined by a least-squares fit to

the density profile given by equation (14). In all the models, the error

on the fit to the mass density never exceeds 1 per cent of the central

value. The contribution of the disc to the rotation curve is shown in

Fig. 1.

We start with a strongly tangentially anisotropic model that is

known to develop strong spiral arms (Vauterin & Dejonghe 1996).

Its distribution function f 0,0
0 (E, J) is shown in the left-hand column

of Fig. 2(a). Most stars in this model populate nearly-circular orbits

that rotate in one direction. The unperturbed moments are shown in

the right-hand column of Fig. 2(a). Using the distribution function

f 1,0
0 (E, J) = f 0,0

0 (E, − J), which has the same unperturbed density

as f 0,0
0 (E, J), one can easily construct counter-rotating discs that all

have the same density distribution. In order to place a fraction x of

all stars on retrograde orbits, the following distribution function can

be used:

f x,0
0 (E, J ) = (1 − x) f 0,0

0 (E, J ) + x f 1,0
0 (E, J ). (15)

In Fig. 2(b), we plotted the distribution function and unperturbed

moments of a model in which 25 per cent of the stars counter-rotate.

In Fig. 2(c), we present the properties of a model consisting of two

equally massive counter-rotating discs.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 2. Unperturbed distribution functions (left-hand panel) and unperturbed moments (right-hand panel) of a few analysed models: (a) f 0,0
0 , (b) f 0.25,0

0 ,

(c) f 0.5,0
0 , (d) f 0.5,0.5

0 , (e) f 0.5,1
0 and (f) f 0,1

0 . For the distribution functions, the density is decreasing linear from black to white.

In the left-hand column of Fig. 2(e), we show the distribution func-

tion f 0.5,1
0 (E, J) of a very radially anisotropic model that is known to

produce a strong bar instability (Vauterin & Dejonghe 1996). Using

this model, we can construct models with varying degrees of radial

anisotropy as follows:

f 0.5,y
0 (E, J ) = (1 − y) f 0.5,0

0 (E, J ) + y f 0.5,1
0 (E, J ). (16)

In Fig. 2(d), we plotted the properties of a model consisting of an

even mix of f 0.5,0
0 and f 0.5,1

0 (i.e. y = 0.5). We can also construct a

similar family without counter-rotating discs:

f 0,y
0 (E, J ) = (1 − y) f 0,0

0 (E, J ) + y f 0,1
0 (E, J ). (17)

In Fig. 2(f), we plotted the distribution function of f 0,1
0 .

4 L O P S I D E D I N S TA B I L I T I E S

4.1 The influence of counter-rotation

In Fig. 3, we show the growth rate and pattern speed of the fastest

growing m = 1 and 2 modes as the fraction x of counter-rotating

stars for the models of the f x,0
0 family changes. Clearly, the fully

counter-rotating f 0.5,0
0 model has a dominant non-rotating m = 1

instability, whereas the m = 2 instability is virtually absent (actually,

two mirror-image m = 2 modes with the same growth rates and

opposite pattern speeds occur in the counter-rotating model). As the

degree of counter-rotation diminishes, the growth rate of the m = 1

instability slowly declines while it picks up a small pattern speed. At

the same time, the m = 2 instability increases in strength. As long as

more than one-quarter of all stars are on retrograde orbits, the model

is dominated by a slowly rotating lopsided mode. Unexpectedly,

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 387, 2–12
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(a) (c) (e)

(b) (d) (f)

Figure 3. Growth rate (a) and pattern speed (b) for the strongest m = 1 (solid line) and m = 2 (dotted line) instabilities as the fraction x of counter-rotating

stars changes. Discontinuities appear when the nature of the instability changes. The perturbed density ρ′(ρ = ρ0 + ερ′) and velocity field v′(v = v0 + εv′)
is plotted out to a radius of 2.5 kpc: (c) rotating one-armed spiral for f 0,0

0 , (d) rotating two-armed spiral for f 0,0
0 , (e) non-rotating lopsided mode for f 0.5,0

0 , and

(f) one of a pair of counter-rotating bars for f 0.5,0
0 . Overdensities are coloured white–red, and underdensities black–blue. In panels (c) and (e), we also indicate

the radius within which a growing m = 1 mode is expected based on density wave theory (see Section 5 for a detailed discussion).

around x ≈ 0.08, the nature of the m = 1 mode changes. In addition,

this time rapidly rotating, lopsided instability becomes the fastest

growing m = 1 mode. Its strength increases together with that of the

m = 2 mode as the degree of counter-rotation vanishes.

The dominant m = 1 mode we find in strongly counter-rotating

models is obviously the well-known counter-rotation instability.

This instability has been known since Zang & Hohl (1978) and has

been studied analytically (Sawamura 1988; Palmer & Papaloizou

1990; Tremaine 2005) and using N-body simulations (Levison,

Duncan & Smith 1990; Merritt & Stiavelli 1990; Sellwood &

Merritt 1994; Sellwood & Valluri 1997). Sellwood & Valluri (1997)

do not detect it in systems rounder than E6, which is mainly the

result of their rounder models being stabilized by a higher radial

pressure. On the other hand, Merritt & Stiavelli (1990) find lopsid-

edness developing in systems as round as E1 but with negligible

radial pressure. Partial rotation only introduces a pattern speed in

an otherwise purely growing instability.

The counter-rotating bars we found were also reported by

Sellwood & Merritt (1994), Levison et al. (1990) and Friedli (1996).

Sellwood & Valluri (1997) argued that they were the result of non-

linear orbit trapping in finite-amplitude spiral disturbances. The fact

that we found them shows that they are formed through linear in-

stabilities.

Recently, some authors found a lopsided instability in a normal

differentially rotating galactic disc (Saha, Combes & Jog 2007). The

lopsided pattern precesses in the disc with a very slow pattern speed

with no preferred sense of precession. The weaker m = 1 mode that

we found in the rotating model has a certain sense of rotation and

bears strong resemblance to the so-called eccentricity instability that

occurs in gaseous and stellar near-Keplerian discs orbiting a central

massive object (Adams, Ruden & Shu 1989; Shu et al. 1990; Noh,

Vishniac & Cochran 1991; Taga & Iye 1998; Lovelace et al. 1999;

Bacon et al. 2001; Jacobs & Sellwood 2001; Salow & Statler 2004).

Lovelace et al. (1999) constructed models for disc galaxies with

exponentially declining surface density profiles embedded within a

spherically symmetric dark halo. These authors found that the inner

regions of such systems rapidly develop a trailing one-armed spiral

wave, even if the mass of the central object is small. The first N-body

example of a rotating lopsided instability was found by Sellwood

(1985) in a mass model of our Galaxy without a halo component.

Evans & Read (1998) examined the global stability of stellar power-

law discs. They report a similar rotating lopsided pattern in cut-out

power-law discs, but found no growing non-axisymmetric modes in

the fully self-consistent power-law discs. We provide the first the-

oretical evidence, based on a thorough mode-analysis of a suite of

self-consistent dynamical models for disc galaxies embedded in a

dark halo, that the eccentricity instability can also occur in the fully

prograde stellar discs of spiral galaxies without an additional mas-

sive central component, such as a compact bulge or supermassive

black hole, and without introducing an unresponsive central region

in the disc.

4.2 Anisotropy

We now study the behaviour of the self-consistent m = 1 and 2 as

the fraction y of stars on radial orbits changes. The variation of the

growth rate and pattern speed is presented in Figs 4(a) and 4(b) for

the models f 0.5,y
0 (black) and f 0,y

0 (red). We start from model f 0.5,0
0 that

is known to develop a strong non-rotating m = 1 instability and two

twin counter-rotating bar instabilities. As y, and thus the fraction

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 387, 2–12
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(a) (b) (c)

Figure 4. Growth rate (a) and pattern speed (b) for the strongest m = 1 (solid line) and m = 2 (dotted line) instabilities as the fraction y of stars on radial orbits

changes for the non-rotating (black) and rotating models (red). The perturbed density ρ′(ρ = ρ0 + ερ′) and velocity field v′(v= v0 + εv′) is shown for model

f 0.5,1
0 in (c). Overdensities are coloured white–red, and underdensities black–blue.

of stars on radial orbits, increases, the m = 1 and 2 instabilities

rapidly stabilize. The lopsided mode is the first to stabilize, at y ≈
0.05. The model becomes fully stable against both m = 1 and m = 2

modes at y ≈ 0.2. For y � 0.6, the model develops a non-rotating bar

instability that becomes stronger as radial anisotropy increases. The

perturbed density and velocity field of the bar of the f 0.5,1
0 are shown

in Fig. 4(c). If we start from model f 0,0
0 , the m = 1 and 2 instabilities

also stabilize with increasing anisotropy. The m = 2 instability is

the last one to stabilize and the model becomes stable for y � 0.6.

From this exercise, it is clear that the mechanism that is respon-

sible for triggering the lopsided mode in the counter-rotating model

relies heavily on virtually all stars moving on near-circular orbits.

Even a relatively small contribution of stars on radial orbits makes

it impossible for the disc to develop the m = 1 mode.

4.3 Perturbed line-of-sight velocity fields

To allow for a direct comparison of our models with observations,

we present in Fig. 5 the perturbed line-of-sight velocity fields for the

extreme cases of exact counter-rotation (top row) and full prograde

rotation (bottom row). The first-order perturbation to the velocityv ′,

Figure 5. Residual line-of-sight velocity field v′
los (with vlos = vlos,0 + εv′

los) for the m = 1 instabilities of (a) f 0.5,0
0 and (b) f 0,0

0 . All fields have an inclination

of 50◦ and a viewing angle φ varying from 0◦ to 90◦ in steps of 30◦. Positive velocities are coloured white–red, and negative velocities black–blue.

corresponding to the perturbation f ′ to the distribution function f0,

is given by

v′ =
∫
v f ′dv− ρ ′v0

ρ0

. (18)

This velocity perturbation is then projected on to the sky in order

to obtain the perturbation on the line-of-sight velocity, denoted by

v′
los. The velocity fields in Fig. 5 have an inclination i = 50◦ and

a viewing angle φ ranging from 0◦ to 90◦. The velocity fields are

only plotted out to a radius of 2.5 kpc since only inside this region is

the density perturbation notable. Schoenmakers, Franx & de Zeeuw

(1997) showed that if the potential contains a perturbation of har-

monic number m then the line-of-sight velocity field contains n =
m − 1 and m + 1 terms. Thus as expected, we can see n = 0 and

2 components in the residual velocity fields but there is no strong

direct resemblance to the two galaxies discussed by Swaters et al.

(1999), one of which shows a dominant n = 2 velocity perturbation

while the other exhibits predominantly an n = 0 structure. Of course,

the residual velocity fields plotted in Fig. 5 are calculated using lin-

ear perturbation theory. Instabilities in real galaxies are likely to be

in the non-linear regime. Therefore, this comparison is intended to

be indicative not definitive.
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5 P H Y S I C A L I N T E R P R E TAT I O N

In order to unravel the physics behind the two distinct m = 1 modes

found in Section 4, we will study the orbits of stars that move in the

global perturbed potential:

V (r , θ, t) = V0(r ) + εV ′(r )ei(mθ−ωt). (19)

In order to simplify the interpretation, we keep the amplitude of the

perturbation fixed, that is, we set �(ω) = 0, and only consider its

pattern speed, �(ω)/m. The prefactor ε is determined by requiring

that the maximum difference between the perturbed and the un-

perturbed density nowhere exceeds 10 per cent of the unperturbed

density. We then numerically evolve an ensemble of stars in the

perturbed potential using a leapfrog integrator. The goal is to see

how the orbits are affected by the perturbation and which perturbed

orbits help support the perturbation. For brevity, we will henceforth

refer to the m = 1 instability of the f 0.5,0
0 model as the ‘non-rotating

lopsided mode’, and to that of the f 0,0
0 model as the ‘rotating lopsided

mode’.

5.1 Non-rotating lopsided mode

In Fig. 6, we present some perturbed stellar orbits that occupy the

region in which the density perturbation is maximal. They all share

the same energy but are characterized by a different angular momen-

tum. We can easily recognize two general orbit families: butterflies

and loops. In Fig. 7(a), we show a more detailed picture of a but-

terfly orbit. A butterfly can be viewed as a librating elliptical orbit

with variable eccentricity. At the turning points of the libration, the

orbit ellipticity becomes zero (this is evidenced by the red, green,

and blue ellipses in Fig. 7a). As the angular momentum of the orbit

Figure 6. Stellar orbits in the potential well of the non-rotating lopsided

mode. All orbits have the same energy but different angular momentum:

angular momentum increases in panel (a) from the black orbit (J = 0) to the

cyan orbit (J = Jc) and in panel (b) from the cyan orbit (J = Jc) to the green

orbit (J = 1.9Jc).

Figure 7. (a) Butterfly orbit. (b) Loop orbit. To see the evolution in time,

we indicated some parts of the orbit in colour. The first part red, the second

part green and the last part blue.

is increased up to a critical point Jc, the two instances of zero ellipse

orbit ellipticity coincide and the orbit fills an elliptical region. For

still higher angular momentum, libration becomes rotation and the

orbit becomes a loop, as can be seen in Figs 6(b) and 7(b). Remark-

ably, both orbit families are also found by Jalali & Rafiee (2000)

for a disc galaxy model with a lopsided potential that is of Stäckel

form in elliptic coordinates and with two separate strong density

cusps. They also found two other orbit families: nucleophilic ba-

nanas and horseshoe orbits. It is clear from their formulation that

these two orbit families are associated with the cusps having di-

verging central densities which is why we do not find them in our

models.

5.1.1 Linear regime

The mechanism that causes the non-rotating m = 1 mode is now

clear: an infinitesimal m = 1 perturbation will cause near-circular

orbits to become somewhat more elliptic and to shift towards the

slight overdensity, thus adding to this overdensity, which in turn

causes other orbits to become more elongated and to shift, and

so on. This was already evident from section 3.3.3(a) of Binney

& Tremaine (1987) who used perturbation theory in combination

with the epicyclic approximation to calculate the response of near-

circular orbits to a general m-armed perturbation. Since this per-

turbation has no Lindblad resonances, the condition that the sign

of the quantity C2(r) = dv′(r)/dr + 2V ′(r)/r (represented by the

red curve in Fig. 8a) traces that of the orbit displacement is ful-

filled everywhere within the stellar disc (see equation 3–120b of

Binney & Tremaine 1987) and the perturbed near-circular orbits

will all strengthen the m = 1 mode. Tangential orbits with C2 >

0 are shifted into the direction of the overdensity (Fig. 8b), those

with C2 < 0 are shifted into the opposite direction (Fig. 8c). As a

consequence, the sign C2 also roughly follows that of the density

perturbation.

With a maximum density contrast of 10 per cent, the orbits plotted

in Figs 6 and 7 are not per se in the linear regime. This was done,

since we here only wish to illustrate the mechanism that induces

the instability to grow, for clarity: a truly infinitesimal perturbation

would result in an equally infinitesimal and therefore nearly invisible

shift of the tangential orbits.

It is instructive to interpret this instability not only on the level of

stellar orbits but also in terms of density waves. As shown in Palmer’s

book on dynamical instabilities (Palmer 1994), a razor-thin disc

consisting of two equal-mass counter-rotating stellar populations

may develop purely growing one-armed (m = 1) Wentzel–Kramers–

Brillouin (WKB) waves if the Toomre parameter, Q = σrκ

3.36Gρ0

,

fails to satisfy the local stability criterion

Q(r ) � κ(r )2

κ(r )2 − �(r )2
. (20)

This is very similar to the well-known criterion Q � 1 for local

stability against purely growing m = 0 waves. The precise form

of this stability criterion depends on three approximations: (i) the

WKB approximation for tightly wound spiral waves, (ii) the epicy-

cle description for near-circular stellar orbits, and (iii) a Gaussian

distribution function. None of these necessarily applies to the mod-

els presented in this paper. None the less, we used the Q(r), κ(r) and

�(r) profiles of the fully counter-rotating f 0.5,y
0 models to evaluate

this criterion as a function of radius, where Q depends on the param-

eter y via the radial velocity dispersion (Fig. 9). We only check the

fully counter-rotating models since only in this case can an analytical
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(a) (b) (c)

Figure 8. (a) The sign of the quantity C2(r) (solid line) roughly traces that of the density perturbation (dotted line). Perturbed orbits (green) are displaced from

the unperturbed orbit (red orbit): orbits with C2 > 0 are shifted into the direction of the overdensity (b), and those with C2 < 0 are shifted into the opposite

direction (c).

Figure 9. In a counter-rotating disc, purely growing WKB waves may

develop when Q(r) (dashed line) � κ(r )2

κ(r )2−�(r )2 (solid line). The quantity

κ(r )2

κ(r )2−�(r )2 is plotted using a full line. The Q profiles of several counter-

rotating models, with increasing radial anisotropy as quantified by the pa-

rameter y in equation (16), are overplotted (see the legend in the figure).

Models with y � 0.06 are stable, both according to Palmer’s stability crite-

rion and our mode analysis.

stability criterion be derived. It is clear from Figs 3(e) and 9 that

the region where, according to the local stability criterion, purely

growing waves may develop roughly coincides with the region in

which the non-rotating lopsided mode resides (i.e. inside a radius

r � 2.1 kpc).

As a further test, we checked whether the model that, according

to our mode-analysis, is the first to be stabilized by increasing radial

anistropy, is also stable according to Palmer’s criterion. This is done

by increasing the parameter y in equation (16). It is clear from Fig. 9

that the Q(r) profile of the first stable model according to our mode-

analysis, the one with y ≈ 0.06 (see Fig. 4a), is also very close to

the line of stability according to Palmer’s criterion. For y � 0.1,

the models are definitely stable both according to Palmer’s criterion

and our mode-analysis. Note that Palmer’s stability criterion is a

sufficient one: satisfying it implies stability, and not satisfying it does

not necessarily imply instability. Given the reasonable agreement

between Palmer’s analysis and our mode analysis concerning the

line of stability and the spatial extent of the m = 1 pattern, we are

led to the conclusion that the purely growing lopsided mode we find

in counter-rotating discs is caused by a local Jeans-type instability.

5.1.2 Non-linear regime

Figs 6 and 7 reveal a feature that is not captured by our linear mode-

analysis. Once the perturbation is strong enough, radial orbits are

deformed into the new family of butterfly orbits whose centres of

gravity are also shifted in the direction of the overdensity. Thus, this

orbit family may potentially contribute to the m = 1 perturbation

but only after the amplitude of the perturbation has become large

enough, see also Jalali & Rafiee (2000). For an infinitesimal pertur-

bation, radial orbits do not contribute to the growth of the instability

(their presence is even detrimental to the instability’s growth in the

linear regime, see below).

Further evidence for this mechanism can be gleaned from the fol-

lowing exercise. A test particle with initial conditions (r 0, v0) on an

orbit in the unperturbed system with potential V0(r) over time fills

a certain area which, in general, will have the form of an annulus

(with circular and straight-line orbits as extremes). For the same

initial conditions (r 0, v0), the test particle’s orbit in the perturbed

potential v(r) will fill a differently shaped area. The difference be-

tween the density distribution of the perturbed orbit and that of

the unperturbed orbit gives an idea of how the density of a galaxy,

made up of an ensemble of unperturbed orbits, will change under

the influence of the given perturbation. In Fig. 10, we show how

the density distribution of an ensemble of circular orbits (Fig. 10a)

or radial orbits (Fig. 10b) changes due to the perturbation given by

Figure 10. The change in the density distribution of an ensemble of or-

bits, δρ, as defined by equation (21), due to the non-rotating m = 1 mode.

Panel (a) : an ensemble of circular unperturbed orbits; panel (b) : an en-

semble of radial unperturbed orbits. Negative values of δρ are coloured in

black–blue, while positive values in white–yellow. The contours of the per-

turbed density of the m = 1 mode are also plotted (solid line: overdensity,

dotted line: underdensity). See the text for a discussion of this figure.
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equation (19); that is, we plot the quantity

δρ(r , θ ) =
∑
orbit

[ρorbit,pert(r , θ ) − ρorbit,unpert(r , θ )], (21)

where the sum runs over an ensemble of circular unperturbed or-

bits with different radii and with the phases of the starting points of

the orbit integrations distributed uniformly over the interval [0, 2π]

(circles in Fig. 10a and spokes in Fig. 10b are caused by the finite

number of orbits). Negative values of δρ are coloured black/blue;

positive values in white/yellow. Clearly, the regions where δρ > 0

coincide with the overdensities of the m = 1 mode (full line con-

tours) whereas the regions where δρ < 0 coincide with the mode’s

underdensities (dotted line contours). It is obvious from Fig. 10(b)

that the radial orbits are not nearly as cooperative despite the fact

that they are slightly displaced towards the inner overdensity. As an

ensemble, they do not react to the imposed perturbation in a way

that would tend to strengthen it since their long axes are oriented

perpendicular to the inner lopsidedness leading rather to an m = 2

feature. The (near-)circular orbits are clearly the backbone of this

m = 1 mode and, as we know from Fig. 4(a), even a smidgen of

stars on radial orbits is enough to stabilize the system against this

instability.

5.2 Rotating lopsided mode

In Fig. 11, we present five perturbed stellar orbits that occupy the

region in which the density perturbation due to the rotating lopsided

mode is maximal. The orbits are plotted in a reference frame that

rotates with the pattern speed of the m = 1 mode. Again we observe

loop orbits that are displaced into the direction of the overdensity

and that can support the lopsided structure (Figs 11a and b). At larger

radii, the stellar orbits attain a banana shape in this reference frame.

These orbits occupy a region outside the mode’s main underdensity

and seem to be connected to the one-armed spiral (Figs 11c–e).

Unlike in the previous case, where aligned loop orbits were almost

solely responsible for creating the instability, here the two orbit

families fulfil different tasks. The aligned loop orbits support the

inner lobes of the lopsided structure whereas the banana orbits make

up the outer one-armed spiral.

5.2.1 Linear regime

For the lopsided mode with pattern speed �p, the quantity C2(r)

from Binney & Tremaine (1987) becomes

C2(r ) = 1

κ2 − m2(� − �p)2

[
dV ′(r )

dr
+ 2

�V ′(r )

r (� − �p)

]
. (22)

The sign of C2 again traces that of the orbit displacement and, with

less fidelity, of the density perturbation (Fig. 12a). Orbits inside

Figure 11. Stellar orbits in the force field of the rotating lopsided mode, as seen in a reference frame rotating with the same pattern speed as the lopsided mode.

We find two orbit families: panels (a) and (b) – loop orbits, and panels (c)–(e) – banana orbits.

the corotation radius are shifted into the direction of the overdensity

(C2 >0) (Fig. 12b). At corotation, C2 diverges. Orbits near corotation

become banana orbits. The corotation radius of the mode is at rc =
0.8 kpc, which coincides with the position of the one-armed spiral.

Outside corotation, the sign of C2 changes and orbits are shifted into

the other direction (Fig. 12c).

The interpretation of this instability in terms of waves is some-

what subtle. In the case of a bar instability, the radial extent of the

m = 2 pattern is determined by the largest radius out to which the

most slowly rotating wave that avoids having an inner Lindblad

resonance (ILR) can travel. This constraint sets the size of the res-

onance cavity within which the pattern can grow by swing amplifi-

cation. However, one-armed waves do not have an ILR, irrespective

of their pattern speed. The radial extent of the m = 1 pattern is set

by the largest radius out to which non-rotating wave packets can

travel. This radius is determined by the disc’s dispersion relation.

We used the WKB dispersion relation (equation 6–46 of Binney &

Tremaine 1987 or equation 12.82 of Palmer 1994) together with

the Q(r), κ(r), and �(r) profiles of the f 0,0
0 model to estimate the

region in which non-rotating one-armed waves are allowed to exist.

The Q(r) profile of the fully rotating f 0,0
0 model rises outwardly,

limiting the extent of non-rotating waves to some finite radius, well

within the disc. In the case of the f 0,0
0 model, for a zero pattern

speed, the dispersion relation has two branches (the long-wave and

the short-wave branch) of incoming and outgoing leading and trail-

ing waves for radii smaller than approximately 1.7 kpc. This sets

the dimension of the resonance cavity within which the pattern can

grow through swing amplification. All m = 1 waves can propagate

into the galaxy centre where incoming trailing wave packets are re-

flected as outgoing leading wave packets, closing the feedback loop.

Moreover, a more steeply rising rotation curve will suppress the

m = 2 mode while leaving the m = 1 mode, which has no ILR, largely

intact.

Thus, following Evans & Read (1998) who already proposed this

mechanism as the cause of the m = 1 modes found in cut-out power-

law discs, we propose swing amplification as the physical cause of

the one-armed mode in this rotating model.

5.2.2 Non-linear regime

In Fig. 13, we show how the density distribution, that is, the quantity

δρ, defined by equation (21), of an ensemble of circular (panel a) and

of radial (panel b) orbits changes due to the rotating m = 1 mode. We

now see that the circular orbits and the radial orbits both support the

lopsided structure. This is because radial orbits as well as the inner

circular orbits become loop orbits that are aligned with the lopsided

mode. If we change the fraction of stars on radial orbits, we have

a slower stabilization of the m = 1 mode than in the non-rotating

models (see Fig. 4a).
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(a) (b) (c)

Figure 12. Panel (a): the sign of the quantity C2(r) (solid line) roughly traces that of the density perturbation (dotted line). Perturbed orbits (green) are displaced

from the unperturbed orbit (red orbit). Orbits with C2 > 0 are shifted into the direction of the overdensity (panel b) and those with C2 < 0 are shifted into the

opposite direction (panel c).

Figure 13. The change in the density distribution due to the rotating m = 1

mode. Panel (a) : an ensemble of circular unperturbed orbits; panel (b) : an

ensemble of radial unperturbed orbits. Negative values are coloured in black–

blue, and positive values in white–yellow. The contours of the perturbed

density of the m = 1 mode are also plotted (solid line: overdensity, dotted

line: underdensity).

Figure 14. A few banana orbits in a frame rotating with the lopsided mode.

All orbits start from corotation with the same energy and angular momentum,

but at a different angle θ : white (θ = 45◦), purple (θ = 90◦), cyan (θ = 135◦),

yellow (θ = 180◦), black (θ = 225◦). The effective potential is also shown

(increasing from white to blue).

We have integrated a number of stellar orbits that all start at the

corotation radius r = rc with phases θ = 45◦, 90◦, . . . 225◦. The

results are shown in Fig. 14 where we also showed the effective

potential

Veff(r , θ ) = V (r , θ ) − 1

2
(�(ω))2r 2. (23)

All banana orbits evolve around the stable Lagrange point of the

system which is located at the local maximum of the effective po-

tential at a phase angle θL. In the corotating reference frame, a star

at position (rc, θL) will remain there forever. Orbits started at coro-

tation but with different phase angles will trace out a banana-shaped

curve. The further away from the equilibrium point (rc, θL) an orbit

is started, the more elongated the banana becomes. The orbit started

at (rc, 180◦ + θL) is circular in the corotating reference frame. The

origin of the one-armed spiral now becomes more clear. A weak,

rotating lopsided perturbation will catch stars close to the (rc, θL)

Lagrange point on banana orbits. These then spend more time near

the stable Lagrange point, creating an overdensity there, and less

time near the diametrically opposite point, creating an underdensity

there. Thus, the banana orbits help strengthen the lopsided mode,

causing more stars to be trapped in banana orbits, and so on.

6 C O N C L U S I O N S

Using a toy dynamical model, we have investigated the properties

and causes of dynamical instabilities that may cause lopsidedness

in disc galaxies.

We found the well-known counter-rotation instability to be the

dominant mode in disc galaxy models with strong counter-rotation

and small radial anisotropy. It is much stronger than any m = 2 mode

we found in these models. The strength of this mode diminishes in

models with less counter-rotation and it eventually disappears in

fully rotating models. These, however, develop a different type of

lopsided mode, that becomes stronger as rotation increases, although

it is always much weaker than the m = 2 spiral-arm mode. This insta-

bility bears strong resemblance to the eccentricity instability that is

known to occur in gaseous and stellar near-Keplerian discs orbiting

a central massive object. We provide the first theoretical evidence,

based on a thorough mode-analysis of a suite of dynamical models

for disc galaxies embedded in a dark halo, that the eccentricity in-

stability can also occur in the fully prograde stellar discs of spiral

galaxies.

By integrating the orbits of an ensemble of stars in the perturbed

potential of the two extreme cases of full counter-rotation, on the

one hand, and full prograde rotation, on the other hand, we inves-

tigated the physics underlying the counter-rotation and eccentricity

instability. The counter-rotation instability grows by changing near-

circular orbits into aligned loop orbits that help maintain a lopsided

structure. If the non-linear regime, radial orbits are changed into

butterfly orbits. In the case of the eccentricity mode, both radial

and tangential orbits become aligned loops in a corotating refer-

ence frame. In the non-linear regime, orbits near corotation are

trapped into resonance and describe banana-shaped figures in a

corotating frame. They help support the characteristic one-armed

spiral.

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 387, 2–12



12 V. Dury et al.

In terms of density waves, the counter-rotating m = 1 mode is

most likely due to a purely growing Jeans-type instability. An ap-

proximative analytical criterion for local stability, akin to Toomre’s

stability criterion for axisymmetric waves, can be employed to es-

timate the region in which purely growing one-armed waves may

develop. This estimate roughly coincides with the region in which

the non-rotating lopsided mode is observed to reside. The rotating m
= 1 mode, on the other hand, grows as a result of the swing ampli-

fier working inside the resonance cavity that extends from the disc

centre out to the radius where non-rotating rotating waves are stabi-

lized by the model’s outwardly rising Q profile. Rotating waves are

confined to even smaller radii so the non-rotating waves effectively

set the outer boundary of the resonance cavity.

Many disc galaxies show a notable m = 1 perturbation besides the

dominant m = 2 spiral-arm mode but only very few of them show

any counter-rotation. The rotating lopsided mode we identified in

fully prograde disc models therefore forms an attractive explanation

for this observed phenomenon.
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