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Stochasticity in N-body simulations of disc galaxies
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ABSTRACT
We demonstrate that the chaotic nature of N-body systems can lead to macroscopic variations
in the evolution of collisionless simulations containing rotationally supported discs. The
unavoidable stochasticity that afflicts all simulations generally causes mild differences between
the evolution of similar models but, in order to illustrate that this is not always true, we present
a case that shows an extreme bimodal divergence. The divergent behaviour occurs in two
different types of code, and is independent of all numerical parameters. We identify and
give explicit illustrations of several sources of stochasticity, and also show that macroscopic
variations in the evolution can originate from differences at the round-off error level. We obtain
somewhat more consistent results from simulations in which the halo is set-up with great care
compared with those started from more approximate equilibria, but we have been unable to
eliminate diverging behaviour entirely because the main sources of stochasticity are intrinsic
to the disc. We show that the divergence is only temporary and that halo friction is merely
delayed, for a substantial time in some cases. We argue that the delays are unlikely to arise in
real galaxies, and that our results do not affect dynamical friction constraints on halo density.
Stochastic variations in the evolution are inevitable in all simulations of disc–halo systems,
irrespective of how they were created, although their effect is generally far less extreme than
we find here. The possibility of divergent behaviour complicates comparison of results from
different workers.

Key words: galaxies: evolution – galaxies: haloes – galaxies: kinematics and dynamics –
galaxies: spiral.

1 IN T RO D U C T I O N

Miller (1964) pointed out that all gravitational N-body systems are
chaotic, in the sense that the trajectories of all particles in two
systems that differ initially by a small shift in the starting posi-
tion or velocity of even a single particle will diverge exponentially
over time. Thus, two simulations that started from the same initial
conditions will follow identical evolutionary paths only if the arith-
metic operations are performed with the same precision and in the
same order, so that the round-off error is identical. These statements
are true for every code, irrespective of the algorithm used for the
computations, and no matter how many particles are employed. In
particular, a simulation can never be reproduced exactly when run
with a different code.

Microscopic chaos is unimportant for many applications because
the different evolutionary paths of almost identical simulations
lead to similar macroscopic properties such as mass profiles, over-
all shape, etc., which therefore constitute firm results. Binney &

�E-mail: sellwood@physics.rutgers.edu (JAS); vpdebattista@uclan.ac.uk
(VPD)

Tremaine (2008, hereafter BT08, p. 344) make this argument and
cite a test by Frenk et al. (1999) which indeed shows that many
different codes yield similar key properties after following the col-
lapse of a dark matter halo. In fact, results generally converge in
tests that vary the numerical grid, softening and/or number of par-
ticles (e.g. Power et al. 2003; Diemand, Moore & Stadel 2004),
which they would not do if there were a large element of stochas-
ticity. Sellwood (2008) also demonstrated exquisitely reproducible
evolution of halo models that were perturbed by externally imposed
bars, in sharp contrast to the results presented here.

Simulations with active discs of particles, on the other hand, are
not so well behaved. Sellwood & Debattista (2006) reported some
minor differences, and one major, in a set of experiments using dif-
ferent numerical parameters, but the same file of initial coordinates.
We show here that simulations with discs can, at least for certain
models, exhibit bi-modally divergent macroscopic results, even be-
tween cases that differ only at the round-off error level. The reason
for this qualitative difference for discs is because collective insta-
bilities and vigorous responses develop from particle noise. Here,
we identify a number of distinct causes of stochastic behaviour in
discs, and explicitly demonstrate how the evolution is affected.
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We show that the principal sources of divergent behaviour are
(a) multiple in-plane global modes, (b) swing amplified noise, (c)
bending instabilities, (d) suppression of dynamical friction and (e)
the truly chaotic nature of N-body systems. We also show that the
distribution of evolutionary paths taken in simulations of different
realizations of the same model varies systematically with the care
taken to set up the initial coordinates of halo particles.

We deliberately choose to illustrate just how large the differences
can be for one particular unstable equilibrium model. Stochasticity
is present in all simulations and its effects are always noticeable
in those containing discs, but generally variations in the evolution
show less scatter than in the case studied here. We show that the
range of behaviour is similar in two quite distinct N-body codes
and illustrate the sensitivity to differences at the round-off error
level. We also show that increasing the number of particles does not
reduce the spread of measured properties.

Real galaxies are assembled and evolve in a complicated manner,
and certainly do not pass through a well-constructed axisymmet-
ric, equilibrium phase that is unstable, although such a model is
commonly used as a starting point of simulations. The objectives
of experiments of this type are therefore to (1) determine whether
plausible axisymmetric galaxy models are globally stable and (2)
develop an understanding of the dynamical evolution of models that
form bars and other non-axisymmetric structures. While we adopt
a model of this type in this paper, its remarkable behaviour has
implications for all simulations of disc–halo models, regardless of
how they were created.

The main part of the paper demonstrates the role of the five above-
named sources of stochasticity in the evolution of disc models.
We also explicitly show the effects of different particle selection
techniques on the robustness of the behaviour. Stochastic divergence
has been reported elsewhere, but not recognized as an intrinsic
aspect of these models; e.g. Klypin et al. (2008) attributed divergent
evolution to inadequate numerical care, whereas stochasticity could
be the cause. Appendix B reports extensive tests that confirm that the
results we report here do not depend on any numerical parameters.

2 SE LEC TION O F PARTICLES

The selection of initial particle positions and velocities of an equi-
librium model requires careful attention. Random selection of even
many millions of particles will lead to shot noise variations in both
the density and velocity distributions of a model. Here, we summa-
rize the available techniques to select initial coordinates of particles,
with a focus on disc–halo models. These methods generally yield a
set of particles that are not specific to any particular N-body code.

2.1 Selecting from a distribution function

The Jeans theorem requires that an equilibrium model should have a
distribution function (DF) that is a function of the isolating integrals
(BT08, p. 283). Thus, the best way to realize an equilibrium set of
particles for an initial model is to select from a DF, when one is
available.

While random selection of particles may be common practice, it
immediately discards a large part of this potential advantage. One
widely used technique (e.g. Holley-Bockelmann, Weinberg & Katz
2005; Weinberg & Katz 2007; Zhang & Magorrian 2008; Dubinski,
Berentzen & Shlosman 2009) is to accept or reject candidate par-
ticles based on a comparison of a random variable with the value
of the DF at the phase-space position of each particle, which in-
troduces shot noise in the density of particles in the integral space.

The evolution of the simulation will be that of the selected DF, not
the intended one, and different random realizations lead to signif-
icant variations in the measured frequencies of the instabilities in
the linear regime (Sellwood 1983) and substantial differences in
the non-linear regime. It is therefore best to adopt a deterministic
procedure for particle selection from a DF.

A scheme to select particles smoothly in this way, first used
in Sellwood (1983) and described more fully in Sellwood &
Athanassoula (1986), is summarized in the appendix of Debattista
& Sellwood (2000). We divide the integral, generally (E, L), space
into n areas in such a way that

∫∫
FdE dL over each small area is

exactly 1/nth of the integral over the total accessible ranges of E
and L. Here F (E, L) is the differential distribution after integration
over the other phase-space variables (BT08, p. 292, 299). Requiring
that one particle lies within each area ensures that the selected set of
particles is as close as possible to representing the desired particle
density in the integral space. We choose the precise position of a
selected particle within each area quasi-randomly in order to ensure
that the particles do not lie on an exact raster in the integral space.
We describe this scheme as deterministic selection from the DF, a
term that ignores this minor random element.

This scheme is readily adapted to select particles of unequal
masses, if desired. To select particles having masses proportional
to a weight function w(E, L), one simply weights the DF by w−1,
which automatically adjusts the subdivision of (E, L) space into
areas of equal weighted DF, as described in Sellwood (2008).

The phases of the particles around the orbit defined by these
integrals can be selected at random. We have no evidence that the
choice of radial phase, either for flat discs or for spheres, causes
significant variations in the outcome, and we discuss the choice of
azimuthal phases in Section 2.3.

Debattista & Sellwood (2000) describe the similar procedure for
two-integral spheroidal models.

2.2 When no simple DF is available

Comparatively few useful mass models have known DFs, and the
realization of an equilibrium set of particles for a general model
presents a significant challenge. Some authors (e.g. Shlosman &
Noguchi 1993) have simply created a rough N-body system, which
they then evolve in the presence of a frozen disc, thereby allowing
the halo to relax towards some nearby equilibrium.

Hernquist (1993) advocates solving the Jeans equations for each
component in the combined potential of all mass components.
His method is widely used (e.g. Athanassoula 2003; Valenzuela
& Klypin 2003; El-Zant et al. 2004; Klypin et al. 2008), but the
resulting equilibrium is approximate.

In general, it is better to derive an approximate DF for a spherical
or spheroidal system. An isotropic DF for a spherical system can
usually be obtained by the Eddington inversion (BT08, p. 289),
although it is important to verify that the function is positive for all
energies (which it generally is, for reasonable mass models).

Creating an equilibrium DF for a multicomponent system
presents a greater challenge, for which three effective approaches
have been developed. Raha et al. (1991), Kuijken & Dubinski
(1995) and Debattista & Sellwood (2000) employ the method of
Prendergast & Tomer (1970) to derive the mass distribution for a
halo having some assumed DF that will be in equilibrium in the
presence of one or more other mass components. Alternatively, one
can use Eddington’s inversion formula for the halo only in the po-
tential of the combined disc and halo (Holley-Bockelmann et al.
2005). A third possibility, as here, is to start from a known spherical
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halo with a known DF and compress it by adding a disc and/or
a bulge using Young’s (1980) method (see Sellwood & McGaugh
2005), and then to select particles from the compressed DF. Even
though the last two methods use only the monopole term for the
disc, all three methods yield a spheroidal system that is close to
detailed equilibrium everywhere.

In general, it is more difficult to construct a good equilibrium
for a disc component. The circular speed in the disc mid-plane as
a function of radius is determined by the total mass distribution,
and, commonly, one specifies Q(R) (Toomre 1964) to determine
the radial velocity spread at each radius. The Jeans equations in
the epicycle approximation (BT08, p. 326) generally yield a poor
equilibrium except when the radial dispersion is a small fraction
of the circular speed, and the asymmetric drift formula may have
no solution near the centres of hot discs. Shu (1969) describes an
approximate DF for a warm disc with a given radial velocity dis-
persion that we, and Kuijken & Dubinski (1995), have found to
be quite serviceable. Again in cases where the radial velocity dis-
persion stretches the validity of the epicycle approximation, radial
gradients can lead to a disc surface density after integration over
all velocities that differs slightly from that specified, as shown in
Section 3.1.

The vertical structure of an isothermal stellar sheet is given by
the formulae developed by Spitzer (1942) and Camm (1950), and
BT08 (p. 321) describe a generalization of the in-plane DF to in-
clude this feature, which they describe as the Schwarzschild DF.
The Spitzer–Camm formulae assume full Newtonian gravity and
no radial density or dispersion gradient. Force softening has an in-
creasingly detrimental effect on the vertical balance as the ratio of
disc thickness to softening length is reduced; we therefore prefer
to construct a vertical equilibrium from the 1D vertical Jeans equa-
tion in the actual force field of the softened disc potential, which
leads to a better equilibrium.

2.3 Quiet starts

The quiet start technique is a valuable addition to the set-up process
only when the model has a few vigorous, large-scale instabilities,
such as arise in a cool, massive disc with a rotation curve that rises
approximately linearly from the centre. It is of little help when linear
stability theory predicts the model to be responsive, but (almost)
stable (e.g. Sellwood 1989; Sellwood & Evans 2001). In these latter
cases, collective responses to residual noise grow more vigorously
than any global modes, and the particle arrangement randomizes
quickly.

For a quiet start, one reproduces each selected master particle
multiple times in a symmetrical arrangement, with image particles
having the identical radius and velocity components in polar coor-
dinates. We restrict the meaning of the phrase ‘quiet start’ to this
symmetrical arrangement of particles – i.e. a quiet start can be used
no matter how the coordinates of the master particles are selected.
Conversely, a ‘noisy start’ means only that azimuthal coordinates are
selected at random, again independent of how the master particles
are selected. The procedures for discs and spheroidal components
differ slightly.

For discs, we place image particles at the corners of an almost
regular polygon in 2D, centred on the model centre. The polygon is
not exactly regular because we nudge the particles away from exact
n-fold symmetry by a random fraction of a small angle, typically
0.◦02. When the disc has a finite thickness, the polygon must be
duplicated with a second on the opposite side of the mid-plane for

which both the vertical position z and velocity vz of every particle
in each of the two polygons have opposite signs.

When the force-determination method is based around an expan-
sion in sectoral harmonics that is truncated at low order, mmax, and
the number of sides to the polygon n ≥ 2mmax + 1, azimuthal forces
in the initial model are much lower than would arise from particle
shot noise – hence the label ‘quiet start’.

We have not tried quiet starts for other force methods, but they
could still offer a significant advantage provided that the number
of corners adopted for the polygon exceeds the azimuthal order of
all the strong instabilities and non-axisymmetric responses (Sec-
tion 5.3) by at least a factor of 2.

We adopt a similar procedure for spheroidal components, except
that we create image particles by rotating the initial position and
velocity vectors using the usual rotation matrix for the adopted set
of Euler angles (e.g. Arfken 1985, p. 199). The set of Euler angles
used creates an n-fold rotationally symmetric set of particles, which
is also reflection symmetric about the mid-plane, and has zero net
momentum with a centre of mass at the model centre; each master
particle is therefore inserted 2n times. It is reasonable to adopt
n � 4.

3 MO D E L S

Here we describe all the various galaxy models we use in this paper.

3.1 Standard galaxy model

Our standard model is a composite disc–halo system with the ro-
tation curve shown in Fig. 1. The two mass components are an
exponential disc and a compressed, strongly truncated, Hernquist
halo.

The initial surface density of the disc has the usual exponential
form

�(R) = Md

2πR2
d

e−R/Rd , (1)

where Md is the nominal disc mass. We truncate the disc at R =
5Rd, leaving an active disc mass of ≈0.96Md. The disc particles
are set in orbital motion with a radial velocity spread so as to make
Toomre’s Q = 1.5. For most models, we determine the approximate
equilibrium velocities by solving the Jeans equations in the epicycle
approximation, as described in Section 2.2.

Figure 1. The inner rotation curve of our standard model (solid). The sep-
arate contributions of the disc (dashed) and halo (dotted) are also shown.
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Figure 2. Details of the approximate DF for the disc. Panels (a) and (b) show, respectively, the variation of f with radial velocity and azimuthal velocity at
five different radii. Panel (c) shows the radial variations of the rms azimuthal speed (vφ solid) and radial speed (vr dashed), (d) compares the circular speed
(dotted) with the mean vφ (solid) to illustrate the asymmetric drift. Panels (e) and (f) compare, respectively, the actual surface density and Q profiles (solid)
with the desired profiles (dashed). The DF does not reproduce these curves perfectly, but the departures are minor.

In some cases, we adopt Shu’s approximate DF instead, and select
disc particles deterministically from it. Properties of the DF and the
radial variations of the low-order velocity moments are shown in
Fig. 2. While the radial velocity distributions are nicely Gaussian,
the azimuthal velocity distributions (Fig. 2b) are markedly skewed.
This aspect and the departures of the surface density and Q profiles
from the desired values all decrease for models with less dominant
discs or with lower values of Q.

For fully 3D simulations, the density profile normal to the disc
plane is Gaussian, with a constant scaleheight of 0.05Rd and ap-
propriate vertical velocities in the numerically determined vertical
force profile.

We construct a halo in equilibrium with the disc in the follow-
ing manner. We start from the initial density profile suggested by
Hernquist (1990)

ρ0(r) = Mhrs

2πr(rs + r)3
, (2)

which has total mass Mh and scale radius rs, with the isotropic DF
also given by Hernquist. We strongly truncate this halo by elimi-
nating all particles with enough energy to reach r > 2r s, causing
the density to taper gently to zero at this radius, and an actual halo
mass of ≈0.25Mh. Since most of the discarded mass is at large
radii, there is little change to the central attraction at r < 2r s and
the model remains close to equilibrium.

For our standard model, we choose r s = 40Rd and set Mh =
80Md so that the halo mass is approximately 19 times that of the
disc. We then employ the halo compression algorithm described by
Sellwood & McGaugh (2005) to compute a new, mildly anisotropic,
DF for the compressed halo that results from including the above

disc. The rotation curve (Fig. 1) shows that the disc dominates the
central attraction over most of the inner part, and the total rotation
curve is approximately flat at large radii.

We adopt a system of units such that G = Md = ad = 1, where
G is Newton’s constant, Md is the mass of the untruncated disc
and ad is the length-scale for the type of disc adopted. There-
fore, distances are in units of ad, masses are in units of Md, one
dynamical time τ = (a3

d/GMd)1/2 and velocities are in units of
v̂ = (GMd/ad)1/2 ≡ ad/τ . One possible scaling to physical units is
to choose the dynamical time to be 10 Myr and ad = 3 kpc, which
implies Md = 5.98 × 1010 M�. The velocity unit v̂ = 293 km s−1,
and the peak circular speed in Fig. 1 is approximately 235 km s−1.

We also present results for two other disc–halo models for which
we choose r s = 30Rd and r s = 50Rd, i.e. that bracket our standard
case. The more extended halo leads to a more dominant disc, while
the disc is less dominant in the more concentrated halo.

We select halo particles from the compressed DF using the
smooth procedure summarized in Section 2.1, with the weight func-
tion for particle masses being w(L) = 0.5 + 20L, where L = |L| is
the total specific angular momentum. All disc particles have equal
masses, but the masses of halo particles range from 0.7 to 14.6
times the mass of the disc particles. Fig. 3 shows the frequency
distribution of halo particle masses.

As a result of this careful procedure, both the disc and halo
components are very close to equilibrium in the combined potential,
and the initial ratio of kinetic to the virial of Clausius (measured
from the particles) is T /|W |= 0.498. At the same time, the phases of
the particles in their carefully selected orbits are chosen at random,
so that the model indeed starts from the usual level of shot noise
resulting from the random locations of the particles.
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Figure 3. The frequency distribution of halo particle masses, in units of the
disc particle mass.

3.2 Isochrone disc

We also present results using the isochrone disc with no halo. The
potential (BT08, p. 65) has a simple form

�(R) = −GMd

a

[
x + (1 + x2)1/2

]−1
, (3)

while the surface density is

�(R) = Mda

2πr3

{
log

[
x + (1 + x2)1/2

] − x

(1 + x2)1/2

}
. (4)

Here a is a length-scale, and x = r/a; note �(0) = Md/(6πa2).
Kalnajs (1976) describes a convenient family of DFs characterized
by a parameter mK; we refer to each model as the isochrone/mK

disc. He (Kalnajs 1978) also presents some preliminary results for
the normal modes, which were confirmed in simulations (Earn &
Sellwood 1995). The local stability parameter (Toomre 1964) for
the isochrone/5 disc has a near-constant value of Q � 1.6, and is
Q � 1.2 for the isochrone/8 model.

4 R ESULTS

We begin by showing just how much variation can occur. We first
present the evolution of our standard disc/halo model whose rotation
curve is shown in Fig. 1. Note that the disc equilibrium in these
models is set by solving the Jeans equations, while the halo particles
are selected deterministically from a DF. Fig. 4 shows results from
16 separate runs with Sellwood’s (2003) hybrid grid code using
fixed numerical parameters, given in Table 1, but with different
random seeds for the initial coordinates of the disc particles only.
We plot the evolution of both the amplitude and pattern speed of the
bar, measured as described in Appendix A. Even though the initial
particles are selected from the same distributions, with different
random seeds for the disc only, the amplitude evolution differs
greatly from run to run, and there is considerable spread in the
evolution of the pattern speed.

In order to demonstrate immediately that the scatter in Fig. 4 is
not a numerical artefact of our grid code, Fig. 5 shows the results
of a similar test with five runs using the tree code PKDGRAV (Stadel
2001) using an opening angle θ = 0.7. PKDGRAV is a multistepping
code, with time-steps refined such that δt = 
t/2n < η(ε/a)1/2,
where ε is the softening and a is the acceleration at a particle’s

Figure 4. Evolution of the amplitude (left-hand panel) and pattern speed
(right-hand panel) of the bar in 16 runs with different random seeds for
the disc particle coordinates, run using Sellwood’s (2003) hybrid code. The
tiny differences in the initial models lead to a remarkably wide range of
properties of the bar at late times.

Table 1. Numerical parameters for our standard runs.

Cylindrical grid Spherical grid

Grid size (NR, Nφ , N z)
= (127, 192, 125) nr = 500

Angular components 0 ≤ m ≤ 8 0 ≤ l ≤ 4
Outer radius 6.076Rd 80Rd

z-spacing 0.01Rd

Softening rule Cubic spline None
Softening length ε = 0.05Rd

Number of particles 500 000 2 500 000
Equal masses Yes No (see Fig. 3)
Shortest time-step 0.0125(R3

d/GM)1/2 0.0125(R3
d/GM)1/2

Time-step zones 5 5

current position. We use base time-step 
t = 0.01 and η = 0.2,
which gives identical time-steps for all particles. The results show a
comparable spread in the evolution of both the amplitude and pattern
speeds. Results from the two codes with identical initial coordinates
for all the particles do not compare in detail. For this problem, the
tree code runs about 37 times more slowly than Sellwood’s (2003)
grid code; we therefore use it only for this cross-check.

The gross qualitative behaviour of all the models in Figs 4 and
5 is similar at first. The bar forms at similar times with similar
pattern speeds, though the initial peak amplitude varies by about
∼25 per cent. The evolution thereafter further diverges, notably with
increasingly large differences in the bar amplitude. Steep declines
in the bar amplitude in the interval 200 � t � 400 are generally

Figure 5. Evolution of five runs with different random seeds for the disc
particle coordinates, run using PKDGRAV with ε = 0.05Rd.
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Figure 6. The inner rotation curves of models with (above) a slightly more
domination halo and (below) a slightly more extended halo. The line styles
mean the same as in Fig. 1. The behaviour of these models is shown in Figs 7
and 8.

associated with buckling events (e.g. Raha et al. 1991), but the
timing of these events varies considerably. At late times in Fig. 4, the
bar amplitude rises steadily in 9/16 simulations, although starting
from different times in each case, while it stays low (over the time
interval shown) in the remaining seven.

It is more encouraging to note that the rate of decrease of the bar
pattern speed does correlate with the bar amplitude; strong bars are
more strongly braked by halo friction, as expected. Furthermore,
continued amplitude growth of bars that are strongly braked has
been reported previously (e.g. Athanassoula 2002).

4.1 Divergence at late times

Dubinski et al. (2009) report a similar study of bar-unstable disc–
halo models, which also reveal large amplitude differences in the
short term. However, they stress that the long-term evolution of their
simulations is reproducible, in contrast to our finding.

Fig. 7 shows that we confirm their conclusion for a different
model with a slightly more dominant halo; the evolution of both
the bar amplitude and pattern speed shows much less scatter than
is seen in Fig. 4. All cases show a steady rise in bar amplitude after
the buckling event, although the curves for the different realizations
during this stage of the evolution are offset in time, as also found
by Dubinski et al.

Fig. 8 shows results from a third model with a more dominant
disc. The amplitude evolution in this model is again bi-modal, rising

Figure 7. Evolution of a set of models with a more dominant halo than
those shown in Fig. 4. The initial rotation curve is shown in the upper panel
of Fig. 6.

Figure 8. Evolution of a set of models with a less dominant halo than those
shown in Fig. 4. The initial rotation curve is shown in the lower panel of
Fig. 6.

steadily at late times in half the cases, although not by as much as in
our standard case (Fig. 4). The rotation curves of both these models
are shown in Fig. 6.

The late rise in bar amplitude occurs, if at all, only in mod-
els with live haloes and is associated with frictional braking. It is
natural that frictional braking should be stronger when the halo is
more dominant. In our standard model (Fig. 4), and in the more
dominant disc case (Fig. 8), the large late-time differences arise
because of strong friction kicks in in some cases, but not in all. We
argue in Section 5.5 that the reason for these differences is the exis-
tence of adverse gradients in the halo DF, which can inhibit friction
(Sellwood & Debattista 2006). Whatever the cause, it is clear from
these two sets of runs that the onset of friction and steady bar
growth at late times depends on comparatively minor differences in
the earlier evolution caused by the different random seeds.

In order to quantify the scatter, we compute the bi-weight estimate
(Beers, Flynn & Gebhardt 1990) of the mean and dispersion of
the measurements throughout all sets of experiments.1 Since bar
growth is shifted slightly in time in the different runs shown in
Figs 4, 7 and 8, we apply a small time offset to the evolution of
both quantities in order to ensure that the evolution coincides as
the relative bar amplitude grows through 0.1, before computing the
mean and scatter from each set. Fig. 9 shows the time evolution of
the means and scatter of the bar amplitude and pattern speed for
all three haloes. It is clear that the stochastic spread is greatest for

1 Their algorithm assumes the data to be unimodal with a few outliers, which
is manifestly not the case in our data at late times.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 398, 1279–1297



Stochasticity in N-body discs 1285

Figure 9. Comparison of the estimated means (solid lines) and ±1σ scatter
(dotted curves) in the three different haloes shown in Figs 4 (red), 7 (blue)
and 8 (green).

our standard halo (red lines), less for the less dominant halo (green
lines) and least for the more dominant halo (blue lines).

4.2 Particle selection

Fig. 10 shows the consequence of selecting disc particles in a de-
terministic manner from an approximate DF as described in Sec-
tions 2.2 and 3.1. This procedure still has a random element when
choosing the precise values of E and Lz within each sub-area, and
the simulations have noisy starts because we randomly select the
radial and azimuthal phases of the particles. The 16 different runs
used different random seeds and are to be compared with those
shown in Fig 4, for which disc particle velocities were selected from
Gaussians whose widths were estimated from the Jeans equations
in the epicycle approximation. There is no significant improvement,
and in this case 6/16 runs have not slowed much by t = 800.

The consequences of selecting halo particle velocities from
Gaussians whose widths are determined from the Jeans equations
(Hernquist 1993) are shown in Fig. 11. With this more approximate
halo equilibrium, we see that all but 3/16 bars grow and slow. The
non-slowing fraction was 5/16 in a similar set of experiments (not
shown) in which the halo particles were selected from the DF by
the accept/reject method, instead of deterministically for Fig. 4.

Thus, we find a weak trend in these results with the quality of
the different halo set-up procedures. The fraction of bars that do
not experience strong friction rises to almost half when we use
the most careful set-up procedure we have been able to devise for
the halo, whereas use of the density profile to choose radii and
the Jeans equations to set halo velocities results in a large majority
(13/16) of bars that experience strong friction (Fig. 11). This trend is

Figure 10. Evolution of a set of 16 runs of our standard model that used a
more careful disc set-up procedure.

Figure 11. Evolution of a set of 16 runs that used Hernquist’s Jeans equa-
tion procedure to set up an approximate equilibrium for the halo particles.
The bar amplitude grows at late times and the pattern decreases in all but
three of these cases.

also consistent with the weak dependence on halo particle number
reported in Appendix B, where we find that the larger the halo
particle number, the smaller the fraction of bars that slow. We also
find a larger fraction of slowing bars when we use equal mass
particles. These results hint that still larger calculations that are set
up with extreme care may evolve in a consistent manner independent
of the random seed, but we have been unable to demonstrate this.

5 SOURCES OF STOCHASTI CI TY

In this section, we describe and illustrate five sources of stochastic-
ity, four of which contribute to the large scatter just described.

5.1 A reproducible result

We start from a simple unstable disc model for which the outcomes
of simulations do not diverge with different random selections of
initial particles. Fig. 12 shows results from noisy start simulations in
2D of an isochrone/5 disc, in which Q � 1.6; numerical parameters
are given in Table 2. The different curves come from separate sim-
ulations with different selections of particles from the same DF, us-
ing the ‘deterministic’ procedure described in Section 2. The small
scatter in the bar amplitude at late times can be further reduced by
restricting disturbance forces to the m = 2 sectoral harmonic only.

5.2 Multiple modes

Most unstable disc models support a large set of small-amplitude,
unstable modes having a wide range of growth rates (e.g. Toomre

Figure 12. Evolution of the bar starting from 16 different selections of
particles from the same DF of the isochrone/5 disc.
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Table 2. Numerical parameters for our 2D simulations.

Isochrone Standard model

Grid (NR, Nφ ) (180,256) (170,256)
Sectoral harmonics 0 ≤ m ≤ 8 0 ≤ m ≤ 8
Outer radius 3.995a 6.23Rd

Softening rule Plummer Plummer
Softening length ε 0.05a 0.1Rd

Number of particles 500 000 Various
Equal masses Yes Yes
Shortest time-step 0.025 0.0125
Time-step zones 1 3

1981; Jalali 2007). These linear modes, even those with the same
angular periodicity, grow independently for as long as all distur-
bance amplitudes remain small. If the seed amplitudes of all modes
are low, the first to saturate will be the most rapidly growing. In
most unstable discs, the fastest growing mode is generally the sim-
plest, or fundamental, mode that is usually dubbed the bar mode.
But if the growth rate of the bar mode does not exceed that of the
next most vigorous mode by a large enough margin for some seed
amplitudes, then both may have comparable amplitude when one
saturates. The consequence of two or more modes reaching large
amplitude at similar times but with random phases can lead to con-
structive or destructive interference in the measured amplitudes as
the ‘bar’ saturates. Non-linear effects then cause such differences
to persist.

We use the slightly cooler mK = 8 isochrone disc to demonstrate
this behaviour explicitly, and, to avoid additional complications, we
restrict disturbance forces to those arising from the m = 2 sectoral
harmonic only. Figs 13 and 14 illustrate the dependence of the
outcome on the initial noise amplitude. The quiet start simulations in
Fig. 13 are good enough that the growth rates of the two most rapidly
growing m = 2 modes can be estimated by fitting to data from the
extensive period of evolution before growth ends (e.g. Sellwood &
Athanassoula 1986). We find that the growth rate of the second mode
to be some 85 per cent of that of the bar mode and that its amplitude
(peak δ�/�) can be within a factor of a few of the dominant mode
as the bar saturates. The consequence is a slight increase in the
scatter of the later bar amplitudes in this case compared with the
case for the hotter disc shown in Fig. 12.

The mild scatter in Fig. 13 requires a quiet start, which decreases
the seed amplitude of all non-axisymmetric disturbances which
grow for ∼100 time units before the rising amplitudes even become
discernible in the figure. The much larger seed amplitudes when

Figure 13. The time evolution of the bar amplitude and pattern speed in
a quiet start isochrone/8 disc in which Q � 1.2. Note the somewhat larger
spread compared with that shown in Fig. 12.

Figure 14. Evolution of the bar in a noisy start isochrone/8 disc in which
particles are drawn from the same DF as was used for Fig. 13.

noisy starts are used do not allow the dominant mode to outgrow
all others before saturation, with the consequences illustrated in
Fig. 14. The same sets of particles were used as for the results shown
in Fig. 13, but we placed the image particles at random azimuths,
instead of evenly. The period of rising amplitude is too short to allow
more than very rough measurements of the growing modes, but it is
clear that multiple unstable modes having comparable growth rates
are seeded at large initial amplitudes by the shot noise. With such
high seed amplitudes, there is not enough time for the most rapidly
growing mode to outgrow the others, which therefore leads to very
substantial variations in the final bar amplitudes. Note that this did
not happen in the warmer disc (Fig. 12), which also used a noisy
start, since in that case all growth rates are lower, while the growth
rate of the dominant bar mode exceeds that of all others by a larger
margin.

Note also that not only is there greater scatter in both the bar
amplitude and pattern speed in Fig. 14, but both quantities scatter
to lower values. We find indications that runs having lower pattern
speed have the more dominant second mode. The fundamental bar
mode, when it has time to outgrow the second mode, peaks at a
greater amplitude and then relaxes back to a lower value, as always
happens in Fig. 13. However, when the second mode is competitive,
the bar amplitude generally has a lower initial peak, and may even
rise subsequently.

5.3 Swing-amplified noise

Our standard model is more complicated than the isolated isochrone
disc. In particular, the inner rotation curve (Fig. 1) rises steeply
where the halo density cusp dominates. Recall that a mode is a
standing wave oscillation of the system, which can be neutral, grow-
ing or decaying. The dominant linear global modes, known as cavity
modes, in bar-unstable discs are standing waves between the centre
and corotation that must have a high enough pattern speed to avoid
any inner Lindblad resonances (ILRs; Toomre 1981; BT08, p. 508).
The consequence of a steeply rising rotation curve is to make the
maximum of the function � − κ/2 rise to high values near the
centre, requiring any linear bisymmetric modes to have very high
pattern speeds, small corotation radii and very low growth rates
(because the inner disc is not all that responsive).

The outer disc, on the other hand, is highly responsive but has
no cavity-type modes. We see evidence for weak edge-type modes,
which arise from a steep density gradient (Toomre 1981) at the
sharply truncated outer edge, but they are sufficiently far out and
of low enough frequency to be decoupled from the bar forming
process in the inner disc.
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Shot noise from the particles is vigorously amplified, but transient
swing-amplified responses should be damped at the ILR of the
disturbance (Toomre 1981; BT08, p. 510), as long as the amplitude
remains tiny. Large amplitude waves are not damped, however, and
trap disc particles near the ILR into a bar-like feature (Sellwood
1989).

Bar formation through amplified noise inevitably leads to a range
of bar properties, but it is fortunate that the range turns out to be
surprisingly narrow. To illustrate this, we study bar formation in
our standard model in simplified simulations in which the motions
of disc particles are confined to a plane, and the halo particles are
replaced by a rigid mass component that simply provides the extra
central attraction to yield the same rotation curve as shown in Fig. 1.
This approach has several advantages: the calculations are less ex-
pensive in computer time, but more importantly the dynamics are
simpler because both bar buckling and halo friction are eliminated,
enabling us to isolate the bar formation process from these other
complicating aspects of the overall evolution.

Fig. 15 shows four sets of 16 runs each in which N is increased
by a factor of 10 from row to row, from N = 50 k at the top, to N =
50 M for the bottom row. The results from each run have been
slightly shifted horizontally so that the amplitude passes through
0.1 at the same time (the mean for the 16 runs) as described above.
The bar amplitude has a higher peak than in Figs 4 and 5 in part, at
least, because we use a different softening rule in 2D. The discrepant
line in one of the pattern speed panels shows that the bar cannot
always be identified in the early stages, but eventually it is in all
cases.

Fig. 16 shows the evolution of the means and scatter in the four
sets of experiments, and reveals that the main effects of increasing
N are threefold: the formation of the bar is delayed because of lower
seed noise, the mean peak bar amplitude increases and the scatter
in the amplitude evolution rises with increasing particle number,
at least to N = 5 M. The pattern speeds are better behaved, with
scatter decreasing as N rises.

Because these calculations have less freedom, the amplitude
variation is much less than those shown in Fig. 4, which have
the same numbers of disc particles as those in the second row
of Fig. 15. Nevertheless, the spread in the bar amplitudes after
the initial rise remains quite high. The pattern speed does not de-
cline as much because the rigid halo does not cause dynamical
friction.

Since amplified noise is intrinsically stochastic, the dominant
transient responses in different random realizations of the disc must
differ. The possible frequency range of the dominant pattern is
broad, but not unbounded; the rotation curve and surface density
profile, among other properties, cause the responsiveness of the
disc to vary with radius, and therefore the dominant responses have
corotation radii in the region where the disc is most responsive.
Thus, the very first collective responses at low, but fixed, N lead
to initial bars having a range of strengths, i.e. sizes, with the larger
bars developing more slowly because the clock runs more slowly
farther out in the disc. (The time delays have been removed from
Fig. 15.)

The larger the number of particles, the longer it takes for the bar to
form (Fig. 16). Initial transient responses occur at roughly the same
rate but, in experiments with larger N, the lower initial amplitudes
do not lead to immediate bar formation. Subsequent amplification
events tend to be of greater amplitude, and to occur farther out in
the disc. Thus, we see that a lower level of shot noise favours large
amplitude responses farther out in the disc that briefly lead to longer
and stronger bars.

Figure 15. Evolution of the bar in four sets of 16 runs with different random
seeds for the disc particle coordinates. The number of particles rises by a
factor of 10 from row to row, ranging from 50 k in the top row to 50 M in
the bottom row.

The pleasant surprise is that after the initial transient episodes pro-
duce bars of different sizes and angular speeds, we observe (Fig. 16)
that subsequent evolution causes the range of bar strengths to nar-
row. Also most of the systematic trends with particle number are
erased in the subsequent evolution, and neither the bar amplitude
nor its pattern speed at later times exhibits more than a mild de-
pendence on N. It is fortunate that a degree of uniformity of the
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Figure 16. Summary plot showing the means and ±1σ scatter of the runs
shown in Fig. 15.

bar properties emerges after such tumultuously different evolution.
But it is far from obvious why it should, especially since the model
could have supported bars of a wide range of sizes (e.g. Fig. 4).

The results shown in Fig. 15 are for models with rigid haloes in
which the disc was created using the Jeans equations (Section 2.2).
Far from becoming better behaved, the scatter in the amplitude evo-
lution increases as N rises! We conducted a similar set of tests,
also with rigid haloes, for which disc particles were selected deter-
ministically from an approximate DF. The evolution of these more
carefully set-up models resulted in slightly improved behaviour:
the bar formed somewhat more slowly, peaked at a little lower am-
plitude for the same value of N, and the scatter no longer varied
systematically with N. However, the final bar amplitude and pattern
speeds were within the ranges shown in Fig. 15.

Unlike the results for the isochrone presented in Appendix C, the
more careful selection of particles yielded only a slight reduction in
the spread in evolution. It is likely that this difference in behaviour
of the two discs is due to the difference in bar forming mechanism;
the instability of the isochrone disc is due to strongly unstable linear
global modes, whereas the bars in our standard model form through
non-linear trapping of swing-amplified particle noise that would be
less affected by the quality of the equilibrium.

Thus far we have discussed only bisymmetric instabilities, but
other low-order instabilities may also be competitive. In fact, we
find some evidence for lop-sidedness, which we describe in the next
section.

5.4 Bending modes

The bars in most 3D simulations suffer from buckling instabilities
that, when they saturate, thicken the bar in the vertical direction
(e.g. Combes & Sanders 1981; Raha et al. 1991). In many, but
not all, cases the evolution of this bending mode is quite violent
and weakens the bar significantly, while the central density of the
bar rises, as reported by Raha et al. The radial rearrangement of
mass evidently liberates the energy needed to puff up the bar in the
vertical direction.

The time of saturation of the buckling mode depends on a variety
of factors, such as the formation time of the bar, and the initial
seed amplitude of the bending mode, the strength of the bar, etc.
Several of these factors will in turn depend on the already stochastic
formation of the bar. It is hardly surprising therefore that this event
occurs over a wide range of times and with a wide range of severity
(Fig. 4), thereby compounding the overall level of stochasticity.

The buckling mode can be inhibited by artificially imposing re-
flection symmetry about the mid-plane, which causes a substantial

Figure 17. Comparison of the time evolution of two runs that differ only in
the imposition of reflection symmetry about the mid-plane. The solid curves
are for a model taken from Fig. 4 in which vertical forces are unrestricted,
while the dashed curves show the evolution of the same initial model when
vertical forces from the disc are constrained to be symmetric about the
mid-plane.

change to the evolution. Fig. 17 compares the evolution for one
case; the dashed curves show that when buckling is inhibited, the
bar continues to grow in amplitude, while slowing, for a long pe-
riod. On the other hand, the amplitude drops quite abruptly when
the bar buckles (solid curves) and the subsequent amplitude and
pattern speed remain approximately steady.

Not all the bars in the runs illustrated in Fig. 4 experience a
violent buckling event. In some cases, the bar amplitude does not
decrease after the initial peak, while in others the amplitude drop is
more gradual.

Fig. 18 shows the effect of suppressing the m = 1 sectoral har-
monic about the z-axis for both the disc and halo particles. This has
the effect of preventing the centres of either component from leav-
ing the z-axis. (Suppressing the l = 1 component of the halo force
calculation would nail the centre of that component to the origin,
which would prevent the halo from responding properly to a buck-
ling mode.) With lop-sidedness inhibited in this way, all bars buckle,
and all but one do so violently with a large decrease in amplitude.
This difference in buckling behaviour from that shown for the same
initial models in Fig. 4 indicates that buckling is strongly influenced
by mild lop-sidedness, which has not been reported elsewhere, as
far as we are aware. We could not find any evidence for lop-sided
instabilities in the runs shown in Fig. 4, and the distance between
the centroids of the halo and disc particles was �0.002Rd. As it
seems unlikely that such small offsets could have such a large effect
on the saturation of the buckling mode, we think it possible that an

Figure 18. Evolution of a set of 16 runs that differ from those shown in
Fig. 4 only in the suppression of lop-sidedness about the z-axis.
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antisymmetric mode competes. Investigation of this possibility here
would be too great a digression.

Despite the violence of most buckling events, most bars in these
restricted simulations continue to slow after the buckling event
and amplitude growth resumes. The four exceptions are bars that
remained strong right after their formation and did not slow much
either before or after the buckling event.

Results reported in Appendix B show that the buckling behaviour
is also somewhat sensitive to particle softening.

Klypin et al. (2008) report that the violence of the buckling
event also depends on the initial thickness of the disc. This is as
expected, since Merritt & Sellwood (1994) showed that buckling
is a consequence of a collective instability that arises in systems
in which the velocity distribution becomes too anisotropic, and
thickening the disc reduces the flattening of the velocity ellipsoid.
However, in a separate test with a set of runs with twice the disc
thickness (not shown), we still find a similar degree of scatter in the
late evolution.

5.5 Incidence of dynamical friction

Fig. 19 shows that the divergent late-time evolution of the runs
shown in Fig. 4 is due to differences in the incidence of dynamical
friction. The lines are coloured blue when the torque acting on the
halo dLz/dt < 5 × 10−5 GM2/Rd, and are red otherwise.

The absence of bar friction may have a variety of causes: (a) low
halo density, (b) a weak bar and (c) metastability caused by local
adverse gradients in the density of halo particles as a function of
angular momentum (Sellwood & Debattista 2006). The halo density
is just about the same in all cases, but the bar strength varies widely
and it is clear that the weaker bars experience little friction.

The third possibility is indicated by the evidence in Fig. 19, since
friction eventually resumes, sometimes after a very long period
during which the bar amplitude does not increase; the metastable
state does not last indefinitely. We argue (Sellwood & Debattista
2006) that the metastable state has a finite lifetime because weak
friction at minor resonances gradually slows the bar until the more
important resonances move out of the region of adverse gradients,
allowing strong friction to resume.

Metastability could be caused by the buckling event, since bars
that are weakened substantially by a buckling event, such as the case
picked out in Fig. 17, generally do not experience much friction at
late times, and their amplitudes stay low. The upward rise in the
bar pattern speed at the time of buckling is shown clearly by the

Figure 19. The results shown in Fig. 4, but with the curves coloured blue
when the torque on the halo is low and red otherwise. The calculations were
continued for models that had not slowed by t = 1000 and were stopped
either at t = 3000 or soon after friction kicked in, which happened in all but
two cases.

solid curve in Fig. 17, which we (Sellwood & Debattista 2006)
found to be a likely cause of metastability. It is reasonable that the
concentration of mass to the centre as the bar buckles should cause
an upward fluctuation in the bar pattern speed (because the orbit
periods must vary inversely as the square root of the mean interior
density). However, buckling does not always lead to a cessation of
friction; for example, many of the bars in the 16 runs with a more
dense halo (Fig. 7) clearly buckled, but friction continued in all
cases.

5.6 True chaos

Here, we show that Miller’s (1964) instability can lead to macro-
scopic differences in discs. Where initial evolution is largely de-
termined by swing amplification of the spectrum of particle noise
laid down by the random coordinates of particles, models that dif-
fer by tiny amounts quickly diverge because the subsequent spiral
events depend on the details of evolution of previous events. This
phenomenon causes the micro-chaos in N-body systems to lead to
macroscopic differences in discs.

Fig. 20 compares the amplitude evolution of each case shown
in Fig. 4 (solid lines) with another run of the same case with the
order of the particles reversed (dashed). Thus, the initial phase-space
coordinates of all particles were identical and are evolved with the
same code on identical processors. Each pair of simulations differs
only in the order in which arithmetic operations are performed,
which changes the initial accelerations at the round-off error level
only, yet the amplitudes at late times generally differ visibly, and in
some cases, e.g. 10 and 15, the evolution differs qualitatively.

So far, every calculation with grid codes that we have reported
here was conducted using single-precision arithmetic for most op-
erations. We have checked that increased precision has no effect
on the range of behaviour shown in Fig. 4, and results differ only
slightly, as we now show for one case.

Fig. 21 shows that the system remains chaotic when we repeat
the calculations using double-precision arithmetic (dotted lines).
The higher precision calculations begin to diverge visibly at about
the same times as in the single-precision cases, and the subsequent
differences are comparable. In order to monitor the divergence in
these cases, we compute the value over time of the difference

d = [�(A2,a − A2,b)2 + �(A2,a − A2,b)2
]1/2

(5)

between the bar coefficients (equation A3) in these pairs of exper-
iments (a and b) in which the order of the particles was reversed.
The solid (dotted) line in the lower panel of Fig. 21 shows the result
for the single (double) precision pair. By t ∼ 300 the models differ
quite visibly in the amplitude and phase of the bar, which accounts
for the fact that d asymptotes to a lasting value where the phases of
the two bars differ.

The difference, d, in double precision grows quasi-exponentially
over time at first, which is symptomatic of chaos, with a
Lyapunov (e-folding) time of ∼4.75 dynamical times, i.e. less than
25 per cent of the orbit period (∼20 dynamical times) at R =
2.5Rd. Using this estimate of the Lyapunov time, the difference
in the double-precision case should equal the initial difference in
the single-precision case after ≈93 dynamical times, and the early
evolution of d in the lower precision case is roughly similar to that
in the double-precision case with a time offset of this magnitude.
Even though there is a much smaller initial difference between the
two double-precision models, the seed amplitude of the instabilities
is set by the shot noise, which is the same in all four runs. Thus,
the non-axisymmetric structures are almost fully developed in the
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Figure 20. Comparison of the amplitude evolution of the models shown in Fig. 4 (solid lines) with the same sets of particles processed in reverse order (dashed
lines). The evolution of these two sets of identical runs is measurably different in all cases, and qualitatively different in some, especially cases 10 and 15. The
dotted lines in the first five panels show the evolutions using PKDGRAV for the same files of initial particles.

Figure 21. The upper panels compare the evolution of four cases that started
from the identical file of particle coordinates, with all numerical parameters
held fixed, except that solid lines are for calculations in single precision,
dotted lines are for the identical calculations in double precision. As for
Fig. 20, the order of the particles was reversed in one of each pair. The lower
panel shows the time evolution of the quantity d defined in equation (5) for
both pairs of runs.

double-precision models by the time the dotted curve reaches the
level of the start of the solid line; therefore, one cannot expect the
curves to overlay perfectly.

It is curious that the difference in the double-precision case
‘catches up’ with that in the single-precision case. The shoulder
in log10d that appears in both precisions at about t = 300 seems
to be responsible for this convergence, which occurs both at such a
large value of d as to be well past where an exponential divergence
could be expected to hold, and at a time when the bar in all four
runs is fully developed.

A perfect collisionless particle system should be exactly time re-
versible; that is, if the velocities of all the particles were reversed at
some instant, the system should retrace its evolution. Fig. 22 shows
that reversed simulations do retrace their evolution for a short while,
between 60 and 80 dynamical times, after which the evolution of the
reversed model visibly departs from the corresponding reflection of
the forward evolution. This period of successful reversibility is con-
sistent with our Lyapunov divergence estimate: 15 Lyapunov times
(=71.25 dynamical times) correspond to a divergence of ∼106.5,
which is sufficient to alter almost every significant digit in these
single-precision calculations and lead to reversed evolution that
becomes largely independent of that in the forward direction. Fur-
ther analysis of these simulations revealed that the first signs of
irreversibility appeared as differences in the leading spiral Fourier
components, suggesting that vigorous swing amplification of parti-
cle noise is primarily responsible for the short Lyapunov time.

We conclude from these tests that the N-body system we are
trying to simulate is indeed chaotic. Further, the effects of chaos are
not significantly worsened by the round-off error in single precision;
we have also verified that the full divergence of the results in Fig. 4
persists in double precision. In fact, the first author has frequently
checked, and always confirmed, that no advantage results from use
of higher precision arithmetic when computing the evolution of
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Figure 22. The magenta line shows the unsmoothed bar amplitude evolution
of one model run to t = 200. The other lines show the continued evolution
of the same model with the velocities of all the particles reversed at t = 50
(cyan), t = 100 (blue), t = 150 (green) and t = 200 (red). In all four cases,
the evolution immediately after the reversal faithfully retraces the forward
evolution for a period less than 100 time units. After this time, the evolution
departs noticeably from a reflection of the line about the reversed moment.

collisionless N-body systems. This conclusion is in sharp contrast
with the requirements for collisional systems (e.g. Aarseth 2008).

In none of the simulations with grid codes reported in this paper
did we distribute the computation over multiple parallel processors,
even though the code has been well optimized for parallel use. We
adopted this strategy in order to avoid the additional randomness that
is inevitable when results from multiple processors are combined
in an unpredictable order.

The dotted curves in the first five panels of Fig. 20 show the result
using the tree code PKDGRAV for the same initial coordinates in each
case, which are reproduced from Fig. 5. Although the ranges and
distributions of measured bar properties shown in Figs 4 and 5 are
similar, the results do not compare in detail, as noted above. Results
from the two different codes diverge strongly in all but one case,
reinforcing the conclusion of intrinsic stochasticity. Which of the
two possible evolutionary paths is taken in the evolution is affected
no more, and no less, by code differences than by choices of the
random seed.

6 D ISCUSSION

6.1 Is there a right result?

One of the most troubling aspects of the diverging evolution in
Figs 4 and 5 is that one cannot decide which of the two patterns of
behaviour is ‘correct’, or indeed whether there could be a unique
evolutionary path with a perfect code and infinite numbers of parti-
cles.

Since these models have high density centres (Fig. 1), linear
stability analysis would most likely reveal that all global modes,
with the possible exception of edge modes (Toomre 1981), have
very low growth rates, and therefore the disc ought to be stable and
not form a bar. If this is indeed what linear theory would predict,
then the ‘right result’ with a perfect code and infinite numbers of
particles would be a stable model that does not form a bar. This

outcome never occurred in the >400 simulations we report here,
even in cases with 100 times our standard number of disc particles
(Fig. 15).

The level of shot noise in a simulation with �1 million particles
is clearly ∼100 times higher than would be present in a real galaxy
if the ∼1010 stars were randomly distributed. But the mass in real
galaxy discs is clumpier because of the existence of star clusters and
giant gas clouds, which raises the amplitude of random potential
fluctuations – although the density fluctuation spectrum may not be
the same as that of shot noise in the simulations. Nevertheless, it
seems most unlikely that a real galaxy closely resembling the model
used in our simulations could avoid being barred.

6.2 Dynamical friction

The greatest source of divergence is the bimodal nature of dynamical
friction, which is avoided for a long time in some cases, but kicks
in immediately in others, causing the bar to slow and increase in
strength by a substantial factor. It is likely that friction is avoided
because the needed gradient in the halo DF as a function of angular
momentum has been flattened by the earlier evolution of the model,
as reported by Sellwood & Debattista (2006). The fact that this
happens here more frequently than we found with the model created
by Valenzuela & Klypin (2003) may have two causes: their model
had both a less dominant disc and an initial halo with significant
departures from equilibrium.

In Section 4.2, we reported a weak trend towards a larger frac-
tion of non-slowing bars as we took greater care over the initial
selection of particles; further, the largest fraction (10/16) occurs in
the test with four times the number of halo particles reported in
Appendix B. This weak trend suggests that the metastable state is
reached more readily as the quality of the simulation is improved.

However, Sellwood & Debattista (2006) found that the metastable
state, in which the bar did not slow, was not indefinite and friction
eventually resumed, as we also find here (Fig. 19). Furthermore,
they found the metastable state to be fragile, and friction would
resume soon after a tiny perturbation, such as the distant passage of
a small satellite galaxy. Thus, even though the metastable state is
reached more frequently in higher quality calculations, it is unlikely
it could be sustained in real galaxies. We conclude therefore that
the strongly braked and growing bar is the most ‘realistic’ outcome
from these simulations.

6.3 Introducing a seed disturbance

Holley-Bockelmann et al. (2005) attempted to make the outcome
more predictable by seeding the bar instability by an externally
applied transient squeeze. We argue here that this approach is not
the panacea it may seem.

In the case of discs having well-defined global instabilities, noisy
starts already seed the dominant unstable modes at high amplitude
(Section 5.2; Sellwood 1983). If a seed disturbance is to prevail, it
must be imposed at such a high amplitude as to be practically non-
linear at the outset. Furthermore, the objective must be to favour
the dominant mode over the others, which cannot be achieved by
a simple perturbation. Instead, one must impose both the detailed
radial shape and perturbed velocities of the mode, which are gen-
erally not known. A more generic disturbance, such as a ‘squeeze’,
will simply raise the amplitude of all the modes and transients,
giving less time for the dominant mode to outgrow the others.
Quiet starts (Section 2.3; Sellwood 1983; Sellwood & Athanassoula
1986), however, have the effect of reducing the initial amplitudes
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of all non-axisymmetric disturbances to such an extent that there
is ample time for the most rapidly growing mode to prevail. Thus,
the outcome of a quiet start experiment is tolerably reproducible
without the need to apply an additional seed (Fig. 13).

The situation is far more difficult in the case, as in this study,
where the disc has no prevailing global instabilities, since the evo-
lution of a simulation is dominated by swing-amplified shot noise.
Quiet starts are all but useless in these circumstances also, since
they break up rapidly as the tiny seed noise is swing amplified, with
similar outcomes, only slightly delayed, to those from noisy starts.
Cranking up the particle number does not reduce variations in the
bar amplitude at later times (they actually increased in Fig. 15), but
does delay bar formation. Because of this, perhaps a suitable seed
disturbance in a very large N disc may prevail over the amplified
shot noise and lead to a more reproducible outcome. We have not
explored this idea here and leave it for a future study.

7 C O N C L U S I O N S

We have shown that simulations over a fixed evolutionary period of
a simple disc–halo galaxy model can vary widely between cases that
differ only in the random seed used to generate the particles, even
though they are drawn from identical distributions. Fig. 4 shows
that the late-time amplitude of the bar can differ by a factor of 3
or more, while the stronger bars may have half the pattern speed
of the weaker ones. Fig. 19 shows that the largest differences are
only temporary, however. We have deliberately focused our study
on a case which displays this extreme bad behaviour. Stochastic
variations are inevitable, but evolution is generally less divergent;
e.g. when the halo has both a higher and lower density (e.g. Fig. 9).

We have shown that the divergent outcomes do not result from a
numerical artefact, since they are independent of numerical param-
eters (Appendix B). Also, similar behaviour occurs with a code of
a totally different type (PKDGRAV; see Fig. 5). Instead, this extreme
stochasticity results from a number of physical causes that we have
identified and illustrated. The most important for our model are
as follows: swing-amplified particle noise, the variations in the in-
cidence and severity of buckling, and the incidence of dynamical
friction. We have separately shown (Fig. 14) that other disc models
having a well-defined spectrum of global modes can have a range
of outcomes because of the coexistence of competing instabilities.

The calculations in Fig. 4 are of models that were set up with
considerable care so as to be as close as possible to equilibrium.
An additional level of unpredictability can result from less careful
set-up procedures, as illustrated in Appendix C.

We have been aware for many years that simulations including
disc components can be reproduced exactly only if the arithmetic
operations are performed in the same order to the same precision,
and that differences at the round-off error level can lead to visibly
different evolution. However, we have been surprised by the strongly
divergent behaviour of the particular model studied here. The pairs
of divergent results in Fig. 20 are the stellar dynamical equivalents
of the possible macroscopic atmospheric consequences of Lorenz’s
butterfly flapping its wings. Because the system is chaotic, improved
precision arithmetic is of no help in reducing the scatter in the
outcomes.

The divergence in different realizations of our standard case arises
from a temporary delay in the incidence of dynamical friction, which
is determined by minor details of the early evolution. Strong friction
causes the bar to both slow and grow; in some cases this occurs right
after bar formation, but in others the bar rotates steadily at an almost

constant amplitude for a protracted period. Friction is avoided when
the earlier evolution causes an inflexion in the angular momentum
density gradient of the halo. We (Sellwood & Debattista 2006)
previously described this as a metastable state because it did not
last indefinitely even when the evolution was unperturbed, and we
also showed that mild perturbations could cause friction to resume.
We find that the fraction of initially non-slowing bars increases
as greater care is taken over the initial set-up because the smaller
fluctuations in such models are less likely to nudge the model out
of the metastable state.

We argue in Section 6 that the most realistic outcome of these
experiments is the slowing and growing bar, despite the fact that we
find the delayed friction result increasingly often as we improve the
quality of the initial set-up and of the simulation. Since most real
galaxies are likely to be subjected to frequent mild perturbations,
we conclude that slowing and growing bars are in fact the more
realistic outcome.

Since the possible evolution of the simulation is not unique,
multiple experiments of essentially the same model are needed in
order to demonstrate that the behaviour is robust. Furthermore, the
failure of an experiment by one group to reproduce the results of
a similar experiment by another may not be the result of errors
or artefacts in either or both codes, but rather a reflection of a
fundamental stochasticity of the system under study.

Klypin et al. (2008) report a similar, but less extensive, compar-
ison between two tree codes and an adaptive mesh method, and
conclude that all the codes produce ‘nearly the same’ results in
simulations performed with sufficient numerical care. However, in-
spection of the comparatively short evolution shown in their fig. 8
reveals slowly diverging outcomes, even between two simulations
run with tree codes. They also report (their fig. 1) a strongly di-
vergent result when the time-step was varied; the sharp decrease in
bar strength in this one case was clearly a consequence of a more
violent buckling event than in their comparison cases. Such a dif-
ference could have easily arisen from stochastic variations of the
kind discussed here, and the conclusion that the shorter time-step
is required no longer follows. We show here (Appendix B), as do
Dubinski et al. (2009), that results are robust to wide variations in
time-step. Clearly, when stochasticity can lead to sharply divergent
results, parameter tests that throw up surprises are conclusive only
after ensembles of particle realizations have been simulated. This
must also be a requirement for meaningful comparisons between
codes or workers.

Since the principal sources of stochasticity are connected to disc
dynamics, they are unrelated to the halo particle number question
raised by Weinberg & Katz (2007). Not only has Sellwood (2008)
already shown that friction can be captured adequately with moder-
ate particle numbers, but we have found here that the expected bar
friction arises more readily in haloes with fewer or equal mass halo
particles, or in haloes that are not set up with great care – which
is not the expected behaviour were particle scattering dominant.
Instead, small departures from equilibrium can upset the delicate
metastable state in which bars can rotate without friction (Sellwood
& Debattista 2006).

It should be noted that bars that slow through dynamical friction
also grow in length, as reported earlier by Athanassoula (2002).
Nevertheless, for these models the ratio of corotation radius to
bar semi-axis R > 1.4, as expected for a moderate-density halo
(Debattista & Sellwood 2000). Those bars that avoid friction for a
long period, however, have R < 1.4, as also found by Valenzuela
& Klypin (2003), but this metastable state is fragile and unlikely to
arise in real galaxies (Sellwood & Debattista 2006).
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Since all N-body simulations are intrinsically chaotic, they can
be reproduced exactly only if the same arithmetic operations are
performed in the same order with the same precision, as noted
in the Introduction, and borne out in Fig. 20. These requirements
dictate the use of the same code, compiler, operating system and
hardware. Further, if the calculation is stopped and then resumed, it
is important to save sufficient information so that the acceleration
used to advance each particle at the next step is identical, to machine
precision, to that it would have been had the calculation not been
interrupted. This can be arranged without too much difficulty, if the
calculation is run on a single processor. However, simulations that
distribute work over parallel processors in computer clusters would
be exactly reproducible only if care is taken to ensure that the work
is distributed and the results are combined in a fully predictable
manner.

Provided the divergence is slight, exact reproducibility is of little
scientific interest, although such a capability is useful to the practi-
tioner. But when, as described here, the model under test can have
strongly divergent behaviour that arises from differences that begin
at the round-off level with the same code on the same machine,
comparison of results between different codes and on different plat-
forms becomes much less likely to produce agreement, even when
the simulations share the same file of initial coordinates. It is ironic
that the model used here was in fact that selected as a test case for
code comparison; fortunately, the authors discovered its unsuitabil-
ity in time!
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APPENDI X A : C ODES AND SOFTENI NG
RU LES

A1 Force determination methods

The accelerations to be applied to particles in an N-body simulation
can be determined in many different ways that fall into two broad
classes. Direct pair-wise summation, usually with a tree algorithm
to improve efficiency, and methods that solve for the gravitational
field over a volume. Three common methods in the latter category
are the following: (1) solving a finite difference approximation to
the Poisson equation on a grid, (2) convolution between the source
distribution and a Green function on a grid and (3) expansion of the
field in multipoles, with either a basis set to represent the radial part
or a grid on which the contributions of interior and exterior masses
are tabulated. Grid and field methods are far more efficient than tree
codes, albeit at the cost of ease of use and versatility.

All grid methods assign masses to a spatial raster of points and
tabulate the field at the same points. Sensible interpolation schemes
to treat particles between grid points lead to forces between particles
that decrease smoothly at separations below one grid space, reaching
zero for coincident particles.
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Finite difference methods solve an approximation to the Poisson
equation directly, yielding a potential arising from the mass distri-
bution. Acceleration components, which have to be estimated from
a finite difference approximation to the gradient operator, lead to
forces that approximate the full Newtonian value at distances of
greater than a few mesh spaces, but which are significantly weaker
at a short range (e.g. appendix of Sellwood & Merritt 1994).

Convolution methods, on the other hand, can be used to compute
the acceleration components directly, without the need to difference
a potential. The Green function is the force field of a unit mass,
which requires a separate convolution for each coordinate direction.
However, the force law needs to be softened at a short range both to
prevent acceleration components from varying so steeply across a
grid cell that simple interpolation rules become inadequate and also
to limit the maximum possible acceleration, particularly where grid
cells become very small near the centres of polar grids.

A2 Softening rules

Since any arbitrary softening rule can be adopted in convolution
methods, physical considerations can be used to select the optimum
rule for a particular application. The Plummer softening rule for a
unit mass uses the density profile and potential

ρ(x) = 3

4πε3
(1 + x2)−5/2, φ(x) = −G

ε
(1 + x2)−1/2, (A1)

where x = r/ε, with ε denoting the softening length. This rule is
optimal when particles are confined to a plane, because it yields
in-plane accelerations that would result if the razor-thin mass distri-
bution were displaced vertically by the softening length. The forces
can be thought of as approximating those from a disc of finite thick-
ness since softening affects the dispersion relation for spiral waves
(e.g. Vandervoort 1970; Erickson 1975; Romeo 1992) in much the
same way as does finite thickness. We therefore employ this rule
when particle motion is confined to a plane.

The disadvantage of the Plummer softening rule in 3D simula-
tions is that it weakens forces on all scales and other rules that avoid
this shortcoming have become popular. The precise short-range be-
haviour is of little importance for relaxation, since inverse square
law forces imply that scattering is dominated by the cumulative
effect of long-range encounters (e.g. BT08, p. 36). For our 3D sim-
ulations, we adopt the somewhat clumsy cubic spline density kernel
used in the original version of the tree code PKDGRAV (Stadel 2001),
which has the form

ρ(x) = 1

4πε3

⎧⎪⎨
⎪⎩

4 − 6x2 + 3x3 0 ≤ x ≤ 1,

(2 − x)3 1 ≤ x ≤ 2,

0 otherwise,

(A2)

as suggested by Monaghan & Lattanzio (1985).2 The density has
continuous second derivatives, while the potential is given by a
messy expression at a short range but is, of course, that of a unit
point mass when x > 2.

A3 Codes

For fully 3D simulations, we use the hybrid grid method described
elsewhere (Sellwood 2003). It solves for the field by convolution on
a 3D cylindrical polar grid for the disc particles, with the softening

2 Their expression omits the square of x in the first line, but this typo is
corrected in Monaghan (1992).

rule (equation A2), while the accelerations of the halo particles are
computed using method 3 of Section A1 on a spherical grid.

We also report a number of results using both polar and Cartesian
2D grids, where we use the Plummer softening law.

In most experiments, we shift the centre of both grids to a new
location every 16 time-steps. The new centre is the location of
the particle centroid (McGlynn 1984). The estimate of the change
in this location is determined by the Newton–Raphson iteration,
which is repeated until the shift at each iteration is less than
10−3Rd. This process is unnecessary when any lop-sidedness in
the mass distribution does not contribute to the accelerations and
when Cartesian grids or tree codes are used.

In addition, we have used the tree code, PKDGRAV (Stadel 2001),
which adopts the softening kernel K1 recommended by Dehnen
(2001). We have also conducted a few tests with the numerical
parameters of time step, opening angle, etc., and found results with
this code are also independent of these choices to a similar level of
tolerance.

A4 Time-steps

When using grid methods, we adopt a five-zone time-stepping
scheme in which the more slowly moving outer particles have time-
steps that increase by a factor of 2 from zone to zone. All particles
experience forces from all others at every step, but forces from parti-
cles in outer zones are interpolated to intermediate times (Sellwood
1985).

A5 Measurements of A and �p

We need to make quantitative comparisons of the bar evolution
in simulations as codes, numerical parameters or random seeds
are varied. In particular, we compare the evolution of the overall
amplitude and phase of a bar-like distortion in the disc. We measure
this quantity by computing

A2(t) = 1

Nd

Nd∑
j=1

e2iθj , (A3)

where Nd is the total number of disc particles and θ j(t) is the
azimuth of the jth disc particle at time t, reckoned from a fixed
direction through the centre defined as the particle centroid at that
time. Since the quantity A is complex, the bar amplitude is |A2| =
[�(A2)2 + �(A2)2]1/2 and phase 2θb = arctan[�(A2)/�(A2)], with
the factor of 2 appearing in order to yield a phase that increases by
180◦ as the bisymmetric pattern makes half a rotation. We measure
A2 at frequent intervals, generally every 0.1 dynamical times. The
pattern speed of the bar is clearly the time derivative of the phase.

We make a smoothed estimate of the amplitude and pattern speed
by fitting a steadily rotating wave to the complex A2 values over a
short time interval, and sliding the time interval forward to follow
the evolution of both quantities. Our plots of amplitude and pattern
speed are of the smoothed quantities.

APPENDI X B: TESTS OF NUMERI CAL
PA R A M E T E R S

As always, we check the extent to which the behaviour depends
upon all numerical parameters. We have been particularly thorough
in the case of our standard model where our results are so surprising.
Since simulations with a rigid halo and the disc particles confined
to a plane already show large variations (Fig. 15), we begin by
presenting checks of these inexpensive simulations.
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Figure B1. Evolution of the bar in 16 runs with different random seeds for
the disc particle coordinates. These simulations use a 2D Cartesian grid:
numerical parameters are as given in Table 2 except N x × N y = 2562; there
is a single time-step zone, and the grid is not recentred.

B1 Grid geometry

We have run these calculations on both a 2D polar grid and a 2D
Cartesian grid in order to convince ourselves that our results were
not being affected by our choice of grid geometry. The result for
the Cartesian grid is shown in Fig. B1, which should be compared
with that for the polar grid shown in the second row of Fig. 15, for
which the number of particles and softening length were identical.
Again the curves for separate runs have been shifted in time so that
they all pass through amplitude 0.1 at the same instant, which is the
mean of the set shown.

While there are differences in detail between the two figures, the
mean and spread in the amplitude evolution are quite similar.

B2 Time-step

Fig. B2 shows that changing the time-step also has little effect on
the evolution. These tests are for two of the 3D models shown in
Fig. 4, one in which the bar slowed at late times and one in which
it did not. The value of the time-step parameter is varied by a factor
of 40 in the case that slowed strongly. Small differences in the
evolution develop at late times because the system is chaotic but
the deviations do not vary systematically with the step size. If the
orbital angular frequency is �c, a particle takes 2π/(�c
t) steps
for a circular orbit. The central value of �c � 2 for our standard
model, implying 250 steps per orbit for the most bound particles
at our standard time step, and 10 times as many for the shortest
step used in Fig. B2. In agreement with Dubinski et al. (2009), we
therefore find no evidence to support the claim by Klypin et al.
(2008) that these simulations require >2000 time-steps per orbit
period for the most tightly bound particles.

We have also verified that the evolution is similarly insensitive
to using a fixed time-step for all particles, instead of the more
efficient scheme of employing longer steps at larger distances from
the centre.

B3 Grid resolution

Fig. B3 shows the effects of changing the size of the cylindrical
polar grid used for the disc in the hybrid code, keeping the initial
particle coordinates and all other numerical parameters fixed. As
in other tests, small differences in the evolution develop at late
times, but aside from the two coarsest grids, for which the late time
evolution departs systematically from the rest, the results are quite
similar. We have also found that smaller differences result when we

Figure B2. Evolution of the bar in two sets of runs with the same random
seeds for the disc particle coordinates. Numerical parameters are given in
Table 1 except the time-step is varied. Values adopted are colour coded as
shown. Upper panels show the evolution from one set of initial coordinates,
lower panels show the evolution from a second set.

Figure B3. Evolution of the bar in 3D runs with the same random seeds for
the disc particle coordinates using different grid sizes. Numerical parameters
are given in Table 1 except the number of grid cells used for the 3D polar
grid is changed, as indicated by the line colours.

double or halve the vertical spacing of the grid. Our standard grid
(Table 1) is shown by the cyan line and seems adequate.

In addition, we checked that the evolution is unaffected (to the
same level of tolerance) by changing the number of active sectoral
harmonics of the polar grid to mmax = 4 or 16 from our standard
value of mmax = 8, or by changing the order of azimuthal expansion
lmax and the number of shells nr of the spherical polar grid from our
standard values of lmax = 4 and nr = 300.

B4 Softening

Fig. B4 shows the effects of changing the softening length for
force convolution on the 3D polar grid used for the disc in the
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Figure B4. Evolution of the bar in 3D runs with the same sets of random
seeds for the disc particles as in Fig. 4 but using different softening lengths.
The softening length in the upper and lower panels is, respectively, halved
and doubled from our standard value.

hybrid code, with the initial particle coordinates and other nu-
merical parameters unchanged from Fig. 4. As reported elsewhere
(Sellwood 1981, 1983; Sellwood & Merritt 1994, etc.), the evolu-
tion of disc instabilities is more sensitive to this numerical param-
eter than perhaps any other. The growth rates of both bar forming
modes and of bending modes are quite sensitive to the sharpness of
short-range forces. The effect of a longer softening length (lower
panels) is both to increase the initial peak amplitude of the bar,
because the second mode is more strongly suppressed by soften-
ing than is the dominant, and to make bending instabilities occur
later and more violently.3 The effects of a reduction in softening
are less systematic, but the extra virulence of swing-amplified shot
noise is the probable cause of more marked upward fluctuations in
the pattern speed evolution, and there are fewer violent buckling
events.

Since it is desirable to use the largest value that does not have
a systematic influence on the outcome, these tests show that our
standard value seems a reasonable compromise.

B5 Number of halo particles

Fig. B5 shows two sets of runs with different numbers of unequal
mass halo particles, in which the random seeds for the disc par-
ticles were changed. (We already reported the dependence of the
behaviour on the number of disc particles in Fig. 15.) Again, the

3 The reason is as follows, adapted from Merritt & Sellwood (1994): if stars
move at speed u in one-dimension over a ripple of wavenumber k, then a
condition for a growing bend is that ku < κz. Increasing softening reduces
κz, which causes only smaller k, or longer wavelength, bends to grow.

Figure B5. Evolution of the bar in runs to test the dependence on the number
of halo particles. The upper panels used one-tenth the number of unequal
mass particles employed in Fig. 4, while the number employed in the lower
panels was 10 M. Other numerical parameters are held fixed at the values
given in Table 1.

behaviour in these tests, and in another set with 2.5 M equal mass
particles, is qualitatively similar to that shown in Fig. 4. The ranges
of final amplitudes and pattern speeds do not depend on the number
of halo particles or whether the masses are all equal. There is a
trend in that the fraction of bars that do not experience strong fric-
tion seems to increase with increasing numbers of halo particles:
it is 4/16 for N h = 2.5 × 105, 7/16 for N h = 2.5 × 106 (Fig. 4)
and 11/16 for N h = 107. For the experiments with N h = 2.5 × 106

equal mass particles, the non-slowing fraction is 3/16.
We make use of this trend with the quality of the simulations in

the discussion of Sections 4.2 and 6.

APPENDI X C : EFFECTS O F PARTI CLE
SELECTI ON FOR THE ISOCHRO NE DI SC

Here, we illustrate the advantages of careful particle selection for a
simple disc model with well-defined global instabilities. The value
of a quiet start was already illustrated by comparison of Figs 13
and 14, but particles were deterministically selected from the DF
for both sets of simulations.

Fig. C1 shows the consequences of selecting particles by the
commonly used acceptance/rejection method. Even though these
experiments still used quiet starts (replicas of each master particle
spaced evenly around a ring), the results are less well behaved: there
is more scatter particularly in the bar amplitude, with one or two
significantly anomalous results.

Fig. C2 shows the results from experiments in which the set-up
procedure for the random speeds of the disc particles stemmed
simply from the requirement that Q = 1.2 everywhere, with the
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Figure C1. Evolution of the bar in the isochrone/8 disc, but instead of
selecting particles deterministically as in Fig. 13, we used a simple ac-
ceptance/rejection algorithm. Note the larger spread in the measured bar
properties.

Figure C2. Evolution of the bar in a noisy start isochrone disc in which the
non-circular motions were set up crudely rather than selecting from a DF.
The value of Q in the initial disc is similar to that of the initial models in
Figs 13, 14 and C1.

Figure C3. Summary of results of Figs 13 (red), 14 (green), C1 (blue) and
C2 (cyan) in order to illustrate the ranges of scatter.

azimuthal dispersion and asymmetric drift determined by the Jeans
equations in the epicycle approximation, as suggested by Hernquist
(1993). Although this may be the most commonly used method, the
outcome of such experiments shows the greatest degree of scatter.

The effects of quiet and noisy starts, and other particle selection
issues, are summarized in Fig. C3. Generally, experiments with
noisy starts show considerably more scatter than do those with
quiet starts, and deterministic selecting from a DF is superior to
random sampling or not using a DF at all.
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