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ABSTRACT
Adaptive optics observations of the flattened nuclear star cluster in the nearby edge-on spiral
galaxy NGC 4244 using the Gemini near-infrared integral field spectrograph (NIFS) have
revealed clear rotation. Using these kinematics plus 2MASS photometry, we construct a
series of axisymmetric two-component particle dynamical models with our improved version
of NMAGIC, a flexible χ2-made-to-measure code. The models consist of a nuclear cluster
disc embedded within a spheroidal particle population. We find a mass for the nuclear star
cluster of M = 1.6+0.5

−0.2 × 107 M� within ∼42.4 pc (2 arcsec). We also explore the presence
of an intermediate-mass black hole and show that models with a black hole as massive as
M• = 5.0 × 105 M� are consistent with the available data. Regardless of whether a black
hole is present or not, the nuclear cluster is vertically anisotropic (βz < 0), as was found
with earlier anisotropic Jeans models. We then use the models as initial conditions for N-
body simulations. These simulations show that the nuclear star cluster is stable against non-
axisymmetric perturbations. We also explore the effect of the nuclear cluster accreting star
clusters at various inclinations. Accretion of a star cluster with mass 13 per cent that of
the nuclear cluster is already enough to destroy the vertical anisotropy, regardless of orbital
inclination.

Key words: galaxies: formation – galaxies: individual: NGC 4244 – galaxies: kinematics and
dynamics – galaxies: nuclei – galaxies: spiral – galaxies: star clusters: general.

1 IN T RO D U C T I O N

Studies of the centres of galaxies across the Hubble sequence have
shown that they frequently host central massive objects such as
massive nuclear star clusters (NCs) and supermassive black holes
(SMBHs). NCs are present in roughly 75 per cent of low- and
intermediate-luminosity disc and elliptical galaxies (Böker et al.
2002; Côté et al. 2006). These NCs are intrinsically very luminous,
with typical MI ∼ −12, and sizes similar to globular clusters (reff ∼
5 pc; Böker et al. 2004).

Two hypotheses have been offered to explain NC formation. One
scenario envisages NCs forming in situ out of gas cooling on to the
centre (Milosavljević 2004; Bekki, Couch & Shioya 2006; Bekki
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2007). Alternatively, NCs may form from star clusters (SCs) merg-
ing at the centres of galaxies (Tremaine, Ostriker & Spitzer 1975;
Lotz et al. 2001; Capuzzo-Dolcetta & Miocchi 2008; Agarwal &
Milosavljević 2011; Antonini et al. 2012; Antonini 2012). Which
hypothesis is correct determines whether NC growth is limited by
the supply of SCs from the host galaxy (Antonini 2012) or regu-
lated by feedback from in situ star formation (McLaughlin, King &
Nayakshin 2006).

The assembly history of NCs can be constrained from their mor-
phology, stellar populations and kinematics. In late-type spirals,
NCs have been found to consist of multiple stellar populations, typ-
ically a young population (<100 Myr), and a dominant population
older than 1 Gyr (Davidge & Courteau 2002; Schinnerer, Böker &
Meier 2003; Rossa et al. 2006; Walcher et al. 2006). The Hub-
ble Space Telescope (HST) has revealed that the NCs of edge-on
galaxies host multiple stellar populations associated with different
morphological components (Seth et al. 2006). These NCs consist
of young blue nuclear cluster discs (NCD) and older nuclear clus-
ter spheroids (NCS). Optical spectra of the NC in the edge-on Scd
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galaxy NGC 4244 (i ≈ 90◦), the nearest galaxy in the sample of Seth
et al. (2006) (D = 4.37 Mpc; Seth, Dalcanton & de Jong 2005a),
indicates the presence of multiple stellar populations, while near-
infrared spectroscopy showed that the NC is rapidly rotating (Seth
et al. 2008b). Using N-body simulations, Hartmann et al. (2011,
hereafter H11) showed that the NC in NGC 4244 cannot have as-
sembled more than half its mass via the accretion of SCs.

NCs exhibit several scaling relations. The luminosity of NCs
correlates with that of their host galaxy (Böker et al. 2002; Côté
et al. 2006; Erwin & Gadotti 2010). A number of studies also found
that their mass, MNC, correlates with the velocity dispersion of the
host bulge, the MNC–σ relation (Ferrarese et al. 2006; Rossa et al.
2006; Wehner & Harris 2006). Early work found that this MNC–σ

relation is parallel to the M•–σ relation of SMBHs (Ferrarese &
Merritt 2000; Gebhardt et al. 2000), with NCs being about ten times
more massive, at the same σ , as SMBHs. However, recent work
has questioned how comparable NCs and SMBHs are. Erwin &
Gadotti (2012) find that NCs and SMBHs follow different relations,
with SMBH masses correlated with properties of the bulge, while
NCs seem to correlate better with properties of the entire host
galaxy. Instead, both Leigh, Böker & Knigge (2012) and Scott
& Graham (2012) show that there is an MNC–σ relation but with
a significantly different slope than for SMBHs. It is not clear at
present whether these differences are intrinsic to NC and SMBH
growth or whether they are due to the fact that the scaling relations
depend on Hubble type. In particular, some recent studies have
suggested that SMBHs and NCs in late-type galaxies do not follow
the same scaling relations as in early types (Greene et al. 2010;
Erwin & Gadotti 2012). Some galaxies host both an NC and an
SMBH (Seth et al. 2008a; Graham & Spitler 2009). The relative
properties of NCs and SMBHs in such galaxies could constrain the
relationship between these objects. For instance, by constructing an
(M• + MNC)–σ relation which includes the mass of both the NC
and of the SMBH (Graham et al. 2011), Graham (2012) found a
flatter relation than the M•–σ relation. But the small existing sample
of objects with known NCs and SMBHs is currently too small to
obtain a clear picture (e.g. Neumayer & Walcher 2012). Progress in
determining whether NCs and SMBHs are related therefore requires
improving the statistics of such measurements. Moreover, a better
understanding of the mass assembly of NCs in late-type galaxies is
vital.

It is generally thought that AGN feedback is responsible for
the M•–σ relation (e.g. Silk & Rees 1998; King 2003; Di Mat-
teo, Springel & Hernquist 2005; Murray, Quataert & Thompson
2005; Sazonov et al. 2005; Springel, Di Matteo & Hernquist 2005;
Johansson, Naab & Burkert 2009), but scenarios where this relation
arises because the galaxy regulates SMBH growth (e.g. Burkert &
Silk 2001; Kazantzidis et al. 2005; Miralda-Escudé & Kollmeier
2005) or purely indirectly by the hierarchical assembly through
galaxy merging (Haehnelt & Kauffmann 2000; Adams, Graff &
Richstone 2001; Adams et al. 2003; Jahnke & Macciò 2011) have
also been proposed. If gas inflow plays a more important role in
the growth of NCs then this opens the possibility that some form of
feedback drives the scaling relations in both SMBHs and NCs (e.g.
McLaughlin et al. 2006).

To help shed light on the formation of NCs in late-type galaxies,
in this paper we study the NC in the nearby Sc galaxy NGC 4244.
H11 modelled this NC using anisotropic JAM models (Cappellari
2008), obtaining a mass of (1.1 ± 0.2) × 107 M�. In this paper, we
build three-integral particle models of the same NC and use them as
initial conditions for N-body simulations to explore its sensitivity
to SC accretion. The outline of this paper is as follows. Section 2

describes the observational data and how they are used in the dynam-
ical modelling. Our modelling method, the χ2-M2M code NMAGIC

based on de Lorenzi et al. (2007, 2008, 2009), is described in Sec-
tion 3 including additional code development. We construct various
axisymmetric particle models of the nuclear region of NGC 4244 in
Section 4 using this improved code. The models consist of an NCD
and an NCS having separate mass-to-light (M/L) ratios. Using the
best model as initial conditions for N-body simulations, we explore
the evolution of the NC in Section 5. Section 6 discusses our results
in the context of NC formation.

2 O B S E RVAT I O NA L DATA

We begin by describing the photometry and how these data are
deprojected to obtain a three-dimensional luminosity density. After
this, the integral-field kinematic data are presented. We adopt a
distance to NGC 4244 of 4.37 Mpc (Seth, Dalcanton & de Jong
2005b). At this assumed distance, 1 arcsec corresponds to 21 pc.

2.1 Photometry

Here, we give a brief summary of the photometric data and its model
representation, both described in detail in Seth et al. (2005a, 2008b).

The photometry consists of K-band data either from 2MASS or
from the near-infrared integral field spectrograph (NIFS) observa-
tions of Seth et al. (2008b). The main disc (MD) of NGC 4244
hosts at its centre an NC which is composed of an NCD and an
oblate NCS. The K-band mass-to-light ratio M/LK is estimated to
be 0.5–0.75 for the galaxy as a whole [from integrated colours
taken from LEDA [B − V = 0.4–0.6] combined with M/L from
Bell et al. (2003)]. The M/LK of the NCD is in the range 0.1–0.25
based on Bruzual & Charlot (2003) models applied to the optical
spectroscopy of Seth et al. (2006), which agrees well with the fitted
luminosities for the disc in HST/ACS and NIFS bands. The NCS
stellar populations are poorly constrained and an M/LK between 0.5
and 1.2 is likely.

The surface brightness of NGC 4244 is decomposed into an ax-
isymmetric three-component model. The luminosity distributions
of the MD and the NCD are modelled as projected edge-on expo-
nential discs (e.g. van der Kruit & Searle 1981):

�(x, z) = �0

(
x

hr

)
K1(x/hr ) sech(z/z0)2, (1)

where �0 and hr are constants, and K1 is the modified Bessel func-
tion. The corresponding model parameters for the MD and NCD
models are taken from Seth et al. (2005a) and Seth et al. (2008b),
respectively.

On the other hand, the NCS is represented using a Sérsic (1968)
profile:

I (x, z) = Ie exp
(−bn((R/Re)1/n − 1)

)
, (2)

where Ie is the surface brightness at the effective radius Re, bn �
1.992n − 0.3271 and R =

√
x2 + (z/q)2 is the elliptical radius,

with flattening q. Best-fitting parameters have been obtained from
Seth et al. (2008b).

All models were convolved with a Gaussian point spread function
(PSF) of 0.23 arcsec FWHM during the fitting process, cf. Seth et al.
(2008b). The best-fitting parameters are summarized in Table 1. The
left-hand panel of Fig. 1, which presents the NCS model, shows its
surface brightness, μK, and ellipticity, ε = 1 − q, profiles.
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Table 1. Best-fitting parameters of the photometric three-component model taken from Seth
et al. (2005a, 2008b). The model consists of an exponential main disc (MD), an exponential
nuclear cluster disc (NCD) and a Sérsic nuclear cluster spheroid (NCS).

COMP. �0 ρ0 hr z0 q Ie Re n
(L� pc−2) (L� pc−3) (pc) (pc) (L� pc−2) (pc)

MD 598 0.167 1783 469
NCD 1.41 × 105 2.08 × 104 3.39 1.19
NCS 0.81 8.73 × 103 10.86 1.68

Figure 1. Left: comparison of the NCS Sérsic photometry with the reprojected three-dimensional luminosity model. The data points correspond to the NCS
Sérsic profile, which was derived via a morphological fit. The solid line shows the model projected on to the sky plane. The upper panel shows the surface
brightness, μK, and the lower one shows the ellipticity, ε = 1 − q. Right: isodensity contours of the NCS in the meridional plane. The luminosity density was
obtained by an edge-on deprojection of the NCS Sérsic surface brightness. The contour labels are given in units of log10 L� pc−3.

2.1.1 Deprojection

To compute the three-dimensional luminosity distribution, each
component of the surface brightness model is deprojected individu-
ally. The edge-on deprojection of an axisymmetric system is unique
(Rybicki 1987). The surface brightness profile of equation (1) cor-
responds to an exponential disc, so the deprojection is readily given
by (e.g. van der Kruit & Searle 1981)

ρ(R, z) = ρ0 exp(−R/hr ) sech(z/z0)2, (3)

where ρ0 = �0/(2hr), and �0, hr and z0 are the same as in equa-
tion (1). Their values are given in Table 1.

Unlike the surface brightness profile of an exponential disc, the
Sérsic profile of the NCS cannot be deprojected in closed form.
We therefore use the program of Magorrian (1999) to numerically
deproject the surface brightness distribution of the NCS. The pro-
gram finds a smooth axisymmetric density distribution consistent
with the surface brightness distribution for the specified inclination
angle (here edge-on, i.e. 90◦), by imposing that the solution maxi-
mizes a penalized likelihood. Because the deprojection is computed
numerically and tabulated on a grid, the reprojected surface bright-
ness profile may not match the Sérsic one perfectly. A comparison
of the NCS Sérsic photometric model and its edge-on deprojec-
tion reprojected on to the sky plane, seen in the left-hand panel of
Fig. 1, shows that the numerical deprojection is in fact very reliable.

The right-hand panel presents isodensity contours in the meridional
plane of the NCS obtained with the Magorrian (1999) code.

2.2 Kinematic data

The integral-field NIFS kinematic data we use in the modelling were
presented in Seth et al. (2008b) and consist of velocity, velocity
dispersion and the higher order Gauss–Hermite moments h3 and h4

(Gerhard 1993; van der Marel & Franx 1993). The NIFS field-of-
view extends to ±1.5 arcsec along each direction, but the usable
data are within ±1.0 arcsec. In this field-of-view, the positions of
the ‘spaxels’ within which spectra were taken define a grid of 63 ×
71 = 4473 cells, which serves as the basis grid for Voronoi bins for
which the velocity, velocity dispersions, h3 and h4 are given.

3 M E T H O D S

We construct a range of dynamical models for the NC of NGC 4244.
These models consist of a disc and a spheroidal particle population
representing the NCD and NCS, respectively. We use an adapted
version of the flexible χ2-made-to-measure (M2M) particle code
NMAGIC described in de Lorenzi et al. (2007, 2008). This section
describes a few ingredients required to construct dynamical M2M
models and presents further development of NMAGIC compared with
our previous work in de Lorenzi et al. (2007, 2008).
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3.1 Model observables

The central luminosity volume density of the NCS is about a million
times larger than that of the MD (Seth et al. 2008b). Thus, the
NCS dominates the luminosity distribution in the central region out
to the edge of the observational data, allowing us to neglect the
luminosity distribution of the MD when computing the photometric
observables. At a distance R = 30 pc from the centre, the luminosity
density in the equatorial plane of the NCS is still about 100 times
that of the MD.

We compute separate spherical harmonic coefficients Alm for the
density of the NCD and the NCS. The corresponding errors are in-
ferred following a Monte Carlo procedure described in de Lorenzi
et al. (2008), in which the Alm’s are computed many times from
random rotations about arbitrary axes of a suitable particle real-
ization. Here, we used the isotropic particle model generated from
the major-axis density profiles of the NCS and NCD components,
described in Section 3.2 below. The ANCD

lm and ANCS
lm constrain the

photometry of the disc and spheroidal particle populations, respec-
tively. We use even Alm’s up to lmax = 8 in 40 radial bins, unevenly
spaced, for a total of NAlm = 2000 photometric constraints. The
grid starts at rmin = 0.0001 arcsec (0.002 pc) and extends to rmax =
2 arcsec (42.4 pc).

The NIFS kinematic data (velocity v, dispersion σ , h3 and h4)
are bi-symmetrized by adopting a point-symmetric reflection with
respect to the centre of the galaxy, as described in de Lorenzi et al.
(2009), followed by a reflection about the major axis. The resulting
data within ±0.7 arcsec are shown in the upper panel of Fig. 6. As
kinematic observables we use luminosity-weighted Gauss–Hermite
coefficients h1 up to h4 (Gerhard 1993; van der Marel & Franx 1993;
de Lorenzi et al. 2008) and the luminosity itself (corresponding to
h0) within the field of view, for a total of Nkin = 365 kinematic
observables (73 Voronoi bins times 5 sets of Gauss–Hermite coeffi-
cients). These are used to constrain the particle system as a whole,
without distinguishing between NCD and NCS populations. The
particle model is seeing convolved with a Gaussian PSF having an
FWHM of 0.23 arcsec (5 pc) by means of the Monte Carlo method
presented in de Lorenzi et al. (2008): when the model kinematics are
computed, each particle is temporarily replaced by Npp pseudo par-
ticles with randomly selected positions having probabilities given
by the PSF. In this work, we adopted Npp = 5.

3.2 Initial conditions

We set up spherical initial conditions using the major-axis density
profile of the NCS. Setting M/LK = 1, the mass density is nor-
malized to unit mass and the self-consistent gravitational potential
is computed. Following Gerhard (1991), the isotropic distribution
function is computed and used to generate a set of equal mass parti-
cles as in Debattista & Sellwood (2000). Finally, 30 per cent of the
particles are randomly assigned to the ‘disc’ population. We pro-
duced two realizations of these initial conditions, a low resolution
one with 0.75M particles which allowed us to explore parameter
space quickly and a higher resolution version with 6M particles.

3.3 Gravitational potential

The M2M method works by adjusting the weights of individual
particles while they are evolved along their orbits. For this orbit
integration, the gravitational potential of the system is needed. This
section details the methods used to construct the dynamical mod-
els presented in Section 4 below. In brief, low-resolution models

(M1) are built using an FFT method for the potential. Then high-
resolution models without (M2) and with intermediate-mass black
holes (IMBHs) (M3–M8) are built with the potential computed on
a spherical mesh of spherical harmonics (Sellwood 2003).

We assume that the mass distributions of the MD, NCD and NCS
follow their luminosity distributions Ji (i ∈ {MD, NCD, NCS}). For
a constant mass-to-light ratio M/Li, the corresponding mass density
is ρ i = (M/Li)Ji, with Ji the deprojection given in Section 2.1.1.

The potential in models M1 was obtained on a Cartesian grid.
Each Cartesian grid consists of N = 1283 grid cells. The NC grid ex-
tends to ±50 pc along each direction, whereas the MD grid extends
to ±3000 pc. This allows us to resolve the scaleheights of the MD
and the NCD, and the half-mass radius of the NCS. The potential on
each grid is calculated using the Fourier convolution theorem. We
assign to each mesh point a mass from the corresponding density
distribution. The potential is then obtained by a convolution with
the Greens function. We employ the FFT method of Press et al.
(1992) to perform the convolution.

We pre-compute the individual gravitational potentials 	M1
i gen-

erated by Ji, for unit mass-to-light ratio. This procedure allows us
to quickly obtain the total gravitational potential for any choice of
M/Li through a weighted sum 	 = ∑

i M/Li	
M1
i , which is kept

constant for each model run.
For a modelling run, we initially tabulate 	i = M/Li	

M1
i on

individual Cartesian grids. Forces at grid points are computed by
finite differences. Individual particle accelerations are then approx-
imated by a cloud-in-cell scheme (Hockney & Eastwood 1988) to
interpolate the grid point forces to the particle position.

For models in the series M2–M8, we use a spherical harmonic
potential solver as described in Sellwood (2003). We use the disc
and spheroid particle populations (particle weights are converted
to mass via the associated M/LK) to calculate the gravitational po-
tential of the entire particle system. Thus, the contribution of the
MD is neglected. As discussed at the end of Section 2.1.1, the error
associated with this approximation is expected to be very small.
For models using the spherical harmonic potential solver, the po-
tential is updated after every M2M correction step (and temporally
smoothed). We use potential expansion coefficients up to lmax = 8
with 300 (unevenly spaced) radial bins to rmax = 200 pc. The width
of the innermost bin is 0.2 pc and of the outermost bin is 4.2 pc,
which is still smaller than the FWHM of the PSF.

3.4 Re-sampling a particle model

We use the final particle dynamical model as initial conditions for N-
body simulations. In order to do this, it is best that the particles have
a narrow range of masses; this ensures both higher effective mass
resolution and a lower artificial two-body relaxation rate. The mod-
els are therefore built using the re-sampling technique described by
Dehnen (2009). This section closely follows Dehnen (2009) work.
We generate the models using a flat weight prior ŵ = N−1. The par-
ticle models are re-sampled every 100 M2M correction steps if the
ratio of largest to smallest particle weight is max{wi}/min{wi} >

10. Because we do not normalize total weight (it is only constrained
by the observables, in particular by A00), the weight of a re-sampled
particle is set to wk = N−1

∑
k wi,old. The phase-space coordinates

(xk, yk) of the kth re-sampled orbit are set to the ith original trajec-
tory if

Ci < γ̄ (k − 1/2) ≤ Ci+1, i, k ∈ [1, N ] (4)

with mean relative normalized weight γ̄ = N−1
∑

i γi , cumula-
tive relative normalized weight Ci = ∑

k < iγ k and γi = wi/ŵ the
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relative weight. Orbits with γi < γ̄ are re-sampled at most once,
whereas orbits with γi > γ̄ produce at least one copy. If a trajec-
tory gets re-sampled, the first copy gets the phase-space position of
the original particle. For additional copies, we randomize positions
(x ± d, y ± d, z ± d) with d = (x2 + y2)1/2/100 exploring the eight
distinct combinations of plus and minus signs. The position of any
additional copy is set to (x + rxd, y + ryd, z + rzd) with rx, y, z ∈ [−1,
1] uniform random numbers. We do not alter velocities and every
copy keeps the velocity of the original particle. At small radii, r <

0.2 pc, we rotate the particles randomly about the z-axis otherwise
the resulting orbits are too closely spaced. Our implementation of
re-sampling conserves total particle number but not individually for
the NCD and NCS. When a particle is re-sampled more than once
all daughter particles inherit its affiliation to either the NCD or the
NCS.

Particle re-sampling at work is illustrated in Fig. 2. The top panel
compares a final particle weight distribution of a model gener-
ated using NMAGIC without re-sampling with the peaked distribution
of a corresponding model built including re-sampling. The model
with a narrow weight distribution has a higher effective resolution
and hence suffers less from shot noise than its counterpart with a
broad distribution. The effective number of particles is defined as
Neff/N = w2/w2 (de Lorenzi et al. 2007). Then, the particle mod-
els shown in Fig. 2 have 1 − Neff/N = 0.67 without re-sampling
and 1 − Neff/N = 9.8 × 10−6 with re-sampling, i.e. re-sampling
leads to an approximately three times higher Neff. Starting from a
spherical particle population, the NCD shown in the bottom panel
is obtained by combining NMAGIC with re-sampling.

3.5 Run parameters

Based on our experience in previous work, we set the value of
the force-of-change parameter ε = 8 × 10−8 and the temporal
smoothing parameter α = 2.1ε. We set the entropy parameter μ =
2 × 10−6. [The parameters (ε, α, μ) are defined in Syer & Tremaine
(1996) and de Lorenzi et al. (2009).] We used time-steps δt = 673 yr,
with χ2-M2M correction steps every 20 time-steps. For comparison,
a circular orbit at r = 13.4 pc, which contains half the particle mass,
takes 1.82 Myr.

4 DY NA M I C A L M O D E L S

In this section, we construct dynamical models for the central region
of NGC 4244 to assess its intrinsic kinematics and to constrain the
NC mass. We investigate axisymmetric, two-component models for
different combinations of mass-to-light ratios, fitting the photometry
and NIFS integral-field kinematic data.

All models are constructed including re-sampling of particle co-
ordinates as described in Section 3.4. In order to reduce compu-
tational cost, the bulk of the modelling is performed using 0.75M
particles, with the gravitational potential calculated on the Cartesian
grids and held fixed throughout. In these models, trajectories are in-
tegrated with a standard leapfrog scheme with a fixed time-step. The
models are constructed in a two-step process. First, we start with the
spherical isotropic 0.75M particle model and evolve it using NMAGIC

to generate a particle realization with desired luminosity distribu-
tion, fitting simultaneously but separately the NCS and NCD pho-
tometric constraints. Since only photometric (not kinematic) con-
straints are fitted at this stage, the velocity scaling is arbitrary and
only the ratio of M/LNCD and M/LNCS matters for the shape of the
gravitational potential. In order to compute the gravitational poten-
tial the ratio (M/LNCD)/(M/LNCS) is fixed at 0.2/1.8. The resulting

Figure 2. Top: comparison of the particle weight distribution of model
M2 generated including re-sampling (solid line) and a corresponding model
produced without re-sampling (dot–dashed line). Bottom: distribution of a
subset of NCD particles of the M2 model, generated using NMAGIC with
re-sampling. The three panels show different projections of the particle
coordinates. Note that the initial NCD model was spherical.

model then serves as a starting point to simultaneously fit both the
photometric and kinematic constraints (Nobs = 2365 observables)
for different combinations of M/LNCD and M/LNCS. During this
adjustment phase, we typically evolve for 4M time-steps (2.7 Gyr)
and apply 200k M2M correction steps. The particle system is then
relaxed for a further 100k time-steps (67 Myr) without changing
particle weights. We refer to the final models as series M1. We vary
M/LNCS between 1.0 and 4.8, whereas we use values for M/LNCD of
0.1, 0.2 and 0.4. The influence of the mass-to-light ratio of the MD
on the quality of the fit is expected to be negligible; we therefore
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Figure 3. χ2 = χ2 − min {χ2} as a function of NCS and NCD K-
band mass-to-light ratio. Upper panel: total χ2 for the model fitted to the
photometric and kinematic target observables. Bottom panel: χ2

kin of the
kinematic observables only. The dashed horizontal lines correspond to 68
per cent (1σ ) confidence after van den Bosch & van de Ven (2009). The
symbols are as follows: the M1 series for M/LNCD = 0.1, 0.2 and 0.4 are
shown as open (red) circles, (black) squares and (blue) triangles, joined by
dot–dashed, solid and dotted lines, respectively. Models in series M2 are
indicated by the solid circles joined by the red dot–dashed lines.

keep it constant at M/LMD = 0.7 compatible with estimates from
integrated colours.

The results are presented in Fig. 3, which illustrates how the
quality of the model fit changes with mass-to-light ratios. The top
panel shows χ2 =χ2 − min {χ2}, whereas χ2

kin of the kinematic
observables alone (χ2 ‘marginalized’ over the Alm’s) is shown
in the bottom panel. The 68 per cent confidence limits (1σ ) are
computed as

√
2Nobs following van den Bosch & van de Ven (2009).

These limits are χ2 = 68.8 and χ2
kin = 27.0, respectively.

Regardless of whether χ2
kin or χ2 is used, the resulting best

model has mass-to-light ratios M/LNCD = 0.4 and M/LNCS = 1.4.
Note that the models with M/LNCD = 0.1 or M/LNCD = 0.2 and
M/LNCS = 1.6 reproduce the NIFS data with comparable quality and
are in better agreement with M/LNCD = 0.1–0.25 estimated from
integrated colours (see Section 2.1) than is M/LNCD = 0.4. More-
over, M/LNCD = 0.1 also agrees with the estimates from Bruzual &
Charlot models (Bruzual & Charlot 2003).

The range of acceptable NCS masses is estimated as the range for
which χ2 (χ2

kin) is below 1σ confidence after ‘marginalizing’
over M/LNCD. Although χ2 is the more appropriate quantity to
discriminate between models because both photometric and kine-
matic constraints are imposed on the models, the allowed NCS
mass ranges determined using either χ2 or χ2

kin agree with each
other. We obtain an NCS mass of MNCS = 1.6+0.5

−0.2 × 107 M� within
≈42.4 pc. This is almost an order of magnitude higher than the lower
limit of ∼2.5×106 M� obtained from the observed velocity of an
H II region at a projected distance of 19 pc from the NC centre
(Seth et al. 2006). The mass within ∼15 pc is 1.0 × 107 M�, which
agrees with the mass within the same radius obtained from the JAM

models in H11, (1.1 ± 0.2) × 107 M�. The mass of the NCD is not
as well constrained: we obtain 3.6 × 105 M� for M/LNCD = 0.1
and 14.4 × 105 M� for M/LNCD = 0.4.

At this point models with 6M particles are constructed start-
ing from the spherical isotropic 6M particle initial conditions.
We start by generating high-resolution versions of models M1
with M/LNCD = 0.1. We again use photometric followed by
photometric+kinematic constraints. But now we replace the FFT
method with a spherical harmonics potential solver in order to ob-
tain higher spatial resolution at the centre. These models also use
a Runge–Kutta time-integrator with adaptive time-step [using rou-
tine ODEINT of Press et al. (1992) with accuracy parameter 10−6] to
allow a comparison with the models which include a black hole,
presented in the next section. Since the potential is computed via an
expansion in l, m spherical harmonics analogous to the photometric
constraints, we include the same terms in the expansion of the po-
tential as for the luminosity density (i.e. non-zero ANCD

lm and ANCS
lm ,

cf. also Section 3.3). The potential is recalculated after every M2M
correction step. We refer to the resulting models as series M2.

The 6M particle models illustrate several interesting points. The
NCS mass estimated using 6M particles agrees with the estimates
presented above using the M1 models. This suggests that the inferred
NCS mass is robust with respect to how the models have been
constructed, in particular to the potential solver, integration scheme
and number of particles. Increasing the number of particles from
M1 to M2 decreases χ2

kin of the corresponding best models by only
a small amount (if at all) with respect to the χ2

kin confidence limit.
This indicates that the model fitted to the NIFS data is dominated
by the uncertainties in the data while the contribution of shot noise
to χ2

kin is negligible. On the other hand, χ2 is reduced considerably
mainly due to a reduction in χ2

Alm.1 This suggests that χ2
Alm is

dominated by Poisson noise. Generally, χ2
Alm < NAlm because of

the temporal smoothing, and both the M1 and M2 models reproduce
the photometric data very well.

We present the intrinsic kinematics of the best-fitting model in
series M2 in Fig. 4. We computed the radial, tangential and vertical
dispersions, σ u, σ v and σw, respectively, and plot the anisotropies
βφ = 1 − (σ v/σ u)2 and βz = 1 − (σw/σ u)2. In agreement with
H11, we find that βz < 0. Also Vrms has a central minimum. H11

1 We use the same MC Alm errors as for models M1.
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Figure 4. The intrinsic kinematics of the NC in the best-fitting model in
the M2 series. From bottom to top, we show the second moment of line-
of-sight velocity Vrms, line-of-sight velocity V, the circular velocity Vc, the
vertical anisotropy βz and the tangential anisotropy βφ . The top row shows
the Toomre-Q of the NCD only.

found that the combination of these two properties provide impor-
tant constraints on the amount of mass that the nuclear cluster could
have accreted in the form of SCs, as we shall also see below.

4.1 Adding intermediate-mass black holes

Some galaxies are known to harbour both an NC and a massive
black hole (Seth et al. 2008a; Graham & Spitler 2009; Neumayer &
Walcher 2012). Since mass and anisotropy are degenerate with each
other (Binney & Mamon 1982), we wish to explore how adding an
IMBH might change βz. We therefore also generate models includ-
ing an IMBH at their centre with the aim of finding a robust upper
IMBH mass limit compatible with the observations. We construct
these models in a manner analogous to models M2 above, using a
spherical harmonics potential solver in order to obtain higher spa-
tial resolution at the centre. These models again use a Runge–Kutta
time-integrator with adaptive time-step for higher accuracy in the
vicinity of the IMBH. Using anisotropic JAM models (Cappellari
2008) H11 obtained an upper limit of M• � 105 M� on any black
hole that may be present. We revisit this estimate with our more
general three-integral modelling.

The IMBH is represented by a Plummer potential with scale-
length set to 0.02 pc. We generate models M3 to M8 for var-
ious IMBH mass fractions. The IMBH mass fractions ζ =
M•/(M/LNCS × 105 M�) are given in Table 2. For each series
of models, the black hole mass is then given as M• = ζ × M/LNCS.
The results of the models are presented in Fig. 5, which illustrates
how the quality of the model fit changes with M/LNCS and ζ . The
left-hand panel shows χ2 = χ2 − min {χ2}, whereas χ2

kin of the
kinematic observables alone is shown in the middle and right-hand
panels. The 68 per cent confidence limits are the same as given
above, i.e. χ2 = 68.8 and χ2

kin = 27.0.
As expected, the minimum χ2 along a given line in Fig. 5 shifts

towards smaller M/LNCS with increasing IMBH mass fraction (see
especially the right-hand panel of Fig. 5). Each line in Fig. 5 inter-
sects the confidence limit (dashed horizontal line) twice (in the case
of series M3 and M4 the modelling sets need to be extrapolated).
The intersection with larger M/LNCS corresponds to the largest ad-
missible IMBH mass along each line. The largest IMBH mass com-
patible with the data would be obtained at a line that intersects the
horizontal line only once, at its minimum χ2. Using χ2

kin shown
in the right-hand panel of Fig. 5, the dashed line with M/LNCS =
1.2 leads to the IMBH mass upper limit of M• = 5.0 × 105 M�.
This upper limit is larger than the one found in H11 using JAM mod-
els, presumably reflecting the greater orbital freedom presented by
three-integral versus less general anisotropic Jeans models.

If we use χ2 shown in the left-hand panel of Fig. 5 instead of
χ2

kin, we find that even larger IMBH masses (up to a factor 2 or
higher) are compatible with the data. Nonetheless, we use the more
conservative IMBH mass range provided by the NIFS data alone.

Fig. 6 shows a comparison of the best-fitting models in series
M2 and M6 (indicated by the orange stars in the middle and right-
hand panels of Fig. 5) with the integral-field NIFS kinematic. The
model fits to the NIFS data are excellent. χ2

kin for the best models
M2 and M6 are 194.715 and 207.532, respectively. Fig. 7 shows a
comparison of the best-fitting models in the M2 and M6 series with
major-axis kinematic data extracted from the NIFS data. The model
kinematics are computed from a Gauss–Hermite fit to the line-
of-sight velocity distribution in the corresponding Voronoi bins. To
compute the temporally smoothed line-of-sight velocity distribution
(LOSVD), we use 27 bins in velocity within a range of width 300
km s−1, centred on the corresponding NIFS line-of-sight velocity.
Note that we did not fit the full LOSVD itself, instead we con-
strained the particle models using luminosity-weighted moments as
described in Section 3.1.

5 N- B O DY SI M U L AT I O N S

Our best dynamical model without an IMBH is M2 with M/LNCS =
1.5. After building this model, we used it for a number of N-body
experiments testing its stability and evolution by using it as initial
conditions. The simulations were evolved with PKDGRAV (Stadel
2001), an efficient, multistepping, parallel treecode. In all cases,
we use an opening angle θ = 0.7. We used base time-step t =
0.1 Myr and changed time-steps of individual particles such that
δt = t/2n < η(ε/a)1/2, where ε is the softening and a is the
acceleration of the particle, with n as large as 29 allowed. We set
η = 0.03, a quite conservative value.

5.1 Stability test

In constructing our dynamical model, we have assumed that the NC
in NGC 4244 is very likely axisymmetric. H11 found no evidence
of non-axisymmetry in the NC of M33. Its PA is consistent with that
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Table 2. Summary of the modelling runs. Columns from left to right are: name of the series of models,
number of particles, mass-to-light ratio of the NCD, mass-to-light ratio of the NCS, IMBH mass fraction ζ ,
the method used to compute the potential and the time integration scheme.

Series Np (× 106) M/LNCD M/LNCS ζ = MBH
(M/LNCS)×105 M� Pot. Int.

M1 0.75 0.1, 0.2, 0.4 1.0–4.8 − FFT Leapfrog
M2 6 0.1 1.0–2.2 − Sph. harm. Runge–Kutta
M3 6 0.1 1.1–1.5 0.6 Sph. harm. Runge–Kutta
M4 6 0.1 1.1–1.5 0.9 Sph. harm. Runge–Kutta
M5 6 0.1 1.1–1.5 1.2 Sph. harm. Runge–Kutta
M6 6 0.1 1.2–1.4 2.3 Sph. harm. Runge–Kutta
M7 6 0.1 1.0–1.3 3.5 Sph. harm. Runge–Kutta
M8 6 0.1 1.0–1.4 5.8 Sph. harm. Runge–Kutta

Figure 5. χ2 = χ2 − min {χ2} as a function of NCS mass-to-light ratio for various IMBH mass fractions ζ = M•/(M/LNCS). Left-hand panel: total χ2

for the model fitted to the photometric and kinematic target observables. Middle panel: χ2
kin of the kinematic observables only. Right-hand panel: χ2

kin as
a function of M• instead of M/LNCS. The dashed horizontal lines correspond to 68 per cent (1σ ) confidence after van den Bosch & van de Ven (2009). In the
left-hand and middle panels, the symbols are as follows: the M2 series is shown as solid (red) circles joined by red dot–dashed lines. Models including a central
IMBH are shown as open squares joined by (black) solid (M3), (green) dashed (M4), (blue) dot–dashed (M5) or (orange) dotted (M6) lines. The open triangles
are for series M7 and M8. The M7 and M8 series are joined by (pink) solid and (grey) dashed lines, respectively. IMBH mass fractions for models in the
M3–M8 series are given in Table 2. In the right-hand panel, the different symbols represent – circles joined by (black) dot–dashed line: M/LNCS = 1, squares
joined by (red) solid line: M/LNCS = 1.1, squares joined by (green) dashed line: M/LNCS = 1.2, squares joined by (blue) dot–dashed line: M/LNCS = 1.3,
squares joined by (pink) dotted line: M/LNCS = 1.4, triangles joined by (grey) solid line: M/LNCS = 1.5, (single) crossed circle: M/LNCS = 1.6, (single) dotted
circle: M/LNCS = 1.7, (single) cross: M/LNCS = 1.9 and (single) diamond: M/LNCS = 2.2. The open and solid (orange) stars in the middle and right-hand
panels mark the best-fitting M2 and M6 models, respectively.

of its MD and its apparent ellipticity is consistent with a vertical
flattening of q = 0.7, the average observed in the NCs of edge-on
late-type galaxies (Seth et al. 2006). There is also only a small
misalignment between the photometric and the kinematic major
axes. At present, M33 is the only galaxy in which the axial symmetry
of the NC can be determined.

Our first N-body simulation therefore tests the stability of the
model against non-axisymmetric perturbations, particularly the bar
instability, which plagues rapidly rotating systems. After evolving
the best-fitting model in series M2 for 50 Myr (the rotation period
at 5 pc being 0.63 Myr), the model remained axisymmetric with no
hint of a bar or spirals. The top panel of Fig. 4 plots the Toomre-
Q = σ uκ/(3.36G�) of the NCD, where κ is the epicyclic radial
frequency, G is the gravitational constant and � is the surface
density. The stability of the system stems from the high Toomre-Q
of the NCD, which is everywhere greater than 10.

5.2 Accretion simulations

H11 explored the hypothesis that NC formation is a result of SC
accretion. They showed that the observed kinematics of the NC in
NGC 4244 are not consistent with accretion of more than ∼50 per

cent of its mass in the form of SCs. Specifically, once the accreted
mass fraction exceeded this value the resulting central Vrms was no
longer a minimum. We will see here too that Vrms starts to lose
its central minimum once the accreted mass fraction becomes too
large, and our constraint is even more stringent than that of H11.
On the other hand, H11 showed that the negative βz of the NC was
only possible if it accreted �10 per cent of its mass as SCs on
highly inclined orbits. Those simulations assumed SCs accreting
on to a pre-existing NC, either as an NCD or as an isotropic NCS.
Therefore, we next subject our best-fitting model of the NC to SC
accretions.

In order to permit the model SCs to sink to the centre via dynam-
ical friction, we introduce the best-fitting model in the M2 series
inside a particle MD with an exponential profile, because NGC 4244
is a late-type, bulgeless galaxy. We use the same model for the MD
as did H11, i.e. four million multimass particles with masses rang-
ing from 7 M� within the inner 20 pc increasing to 1.2 × 107 M�
in the disc outskirts. The distributions of masses and softening of
the MD particles are shown in fig. 6 of H11; the softening is related
to particle mass via εp ∝ m1/3

p .
We accrete three of the model SCs described in H11 which we

term G1, G2 and G3 in order of increasing mass. Their properties
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Figure 6. Symmetrized NIFS integral-field kinematic data within ±0.7 arcsec of the central region of NGC 4244 (top row) compared with corresponding
luminosity-weighted data extracted from the best-fitting models in series M2 (middle row) and M6 with M/LNCD = 0.1, M/LNCS = 1.3 and M• = 3.0 × 105 M�
(bottom row). These models are indicated by the open and solid orange stars, respectively, in the right-hand panel of Fig. 5. From left to right are shown:
line-of-sight velocity v, line-of-sight velocity dispersion σ and higher order Gauss–Hermite moments h3 and h4.

are listed in Table 3. As in H11, we define the concentration of each
SC as c ≡ log(Reff/Rc), where Reff is the half-mass radius (effective
radius) and Rc is the core radius, where the surface density drops
to half of the central. These were allowed to accrete on to the NC
starting from circular orbits at 50 pc from the centre. We start the
SCs from four different inclinations relative to the NCD: 0◦, 30◦,
60◦ and 90◦. The SCs require about 40 Myr to accrete on to the NC.

The results of these accretion simulations are shown in Fig. 8.
The low-density SC G1 is disrupted at ∼8 pc from the centre. Thus,
it barely perturbs the kinematics of the NC. However, we note that
there is a general tendency for βz to increase slightly within Reff,
suggesting that even this mild ∼1 per cent mass accretion can alter
the kinematics. The more massive, denser, clusters G2 and G3, both
of which sink all the way to the centre, perturb the kinematics much
more. In all the cases βz increases; for G2 βz averaged within Reff

is nearly zero, while βz > 0 everywhere within Reff when G3 is
accreted.

Accreting G3 (which has a mass ∼13 per cent that of the NC)
also raises the central Vrms. Although Vrms at the centre remains
smaller than at Reff, there does not seem to be much room for
further significant accretions without making Vrms centrally peaked,
unlike the observations. This is likely to hold also if this mass
fraction arrives as many smaller SCs, provided that the SCs are

dense enough that some fraction of their stars survives all the way
to the centre of the NC.

6 D I S C U S S I O N A N D C O N C L U S I O N S

We have performed a dynamical study of the nuclear cluster in
the edge-on spiral galaxy NGC 4244 taking into account differ-
ent morphological components, which are the galaxy MD, NCD
and NCS. We have constructed axisymmetric dynamical particle
models accounting for the MD, the NCD and the NCS. We find a
total NCS mass MNCS = 1.6+0.5

−0.2 × 107 M� within approximately
42.4 pc (2 arcsec). Both the fits of Seth et al. (2005a) and Fry et al.
(1999) show that there is no obvious bulge component in NGC 4244.
Using the 2MASS Large Galaxy Atlas (Jarrett et al. 2003) K-band
magnitude, the total luminosity of the galaxy is 3.2 × 109 L�, and
thus the galaxy stellar mass is 2 × 109 M�. Fig. 9 plots the NC
mass compared with the MCMO–Mgal relation. The NC sits above
this relation.

6.1 Vertical anisotropy

The kinematics are moderately tangentially anisotropic inside Reff

with an anisotropy parameter βz ∼ −0.1. This is in good agreement
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Figure 7. Comparison of the best-fitting models in series M2 and M6 (indicated by the open and solid orange stars in Fig. 5) to the kinematic data along the
major axis extracted from the NIFS data. Models and data are shown as lines and open circles, respectively, with M2 indicated by the dot–dashed (red) line and
M6 by the dotted (black) line. From bottom to top are shown: velocity v, velocity dispersion σ and Gauss-Hermite moments h3 and h4. The model kinematic
data were computed using a Gauss–Hermite fit to the velocity distribution along the line of sight.

Table 3. The SCs used in the accretion simulations.
M� is the stellar mass of the SC, Reff is the effective
(half-mass) radius and c is the concentration (defined
in the text). For comparison, the last column lists the
name used for the model in H11.

Model M� Reff c H11 name
(× 105 M�) (pc)

G1 2 1.11 0.12 C4
G2 6 1.11 0.16 C5
G3 20 2.18 0.12 C3

with the JAM models of H11. H11 showed that βz < 0 requires high-
inclination infall of SCs on to a pre-existing nuclear cluster. In our
accretion simulations on to a more realistic model of the NC, we
found that even the accretion of an SC of just 13 per cent, the mass is
enough to erase the vertical anisotropy. This raises questions about
whether such anisotropy can be due to accretion at all. It also hints
that, unless we are observing the NC of NGC 4244 at a special time,
it cannot sustain accretion of �10 per cent mass as suggested by
H11.

We therefore tested whether the assumption of a perfectly edge-
on nuclear cluster may bias the modelled vertical anisotropy to
negative values if the real inclination is somewhat smaller. The
smallest inclination at which we were able to deproject the NCD

photometry was 83◦. Using a model deprojected at this assumed
inclination and the observed kinematics, we built NMAGIC models
assuming M/LNCS = 1.5 starting from the best-fitting edge-on model
M2. The dashed black lines in Fig. 10 show that the 2D anisotropy,
βz = 1 − σ 2

z /σ 2
R , and 3D anisotropy, Bz = 1 − 2σ 2

z /(σ 2
R + σ 2

φ ), are
barely changed compared to the edge-on case (solid black lines)
and remain negative. Thus, a negative vertical anisotropy is not an
artefact of assuming that the nuclear cluster is perfectly edge-on.

We finally explore whether the recovered βz changes if we in-
clude IMBHs in the models. In Fig. 10, we plot both the vertical
anisotropies for varying M•. While increasing M• raises the vertical
anisotropy, it still remains negative within Reff. We conclude that the
NC must be vertically anisotropic even if a black hole were present.

6.2 Summary

We have built dynamical models of the NC in the nearby, edge-
on late-type galaxy NGC 4244. Using particle re-sampling, we
were able to obtain a narrow distribution of weights in our NMAGIC

models allowing us to use the models as initial conditions in N-body
simulations. Our results can be summarized as follows.

(i) We find a mass of the spheroidal component of the NC,
MNCS = 1.6+0.5

−0.2 × 107 M� within 42.4 pc. The mass within 15 pc is
∼1.0 × 107 M�, in very good agreement with the value estimated
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Figure 8. The effect of accreting SCs on to the NC in NGC 4244. From left to right these show the effect of accreting SCs G1, G2 and G3. The black, red,
green and blue solid lines show SCs accreting from 0◦, 30◦, 60◦ and 90◦, respectively. The dashed line shows the initial NC.

Figure 9. Mass of the NC of NGC 4244 versus the mass of the host galaxy
compared with the MCMO–Mgal relations of Ferrarese et al. (2006). The solid
red and black lines show the correlations for NCs and SMBHs in early-type
galaxies, respectively, with 1σ confidence levels shown as dashed lines. The
blue lines show the relation of Scott & Graham (2012).

by H11 using anisotropic JAM models. This mass puts the nuclear
cluster above the MNC–MGal relation.

(ii) The mass of the bluer disc component of the nuclear cluster is
less constrained and covers the range 3.6 × 105 � MNCD � 14.4 ×
105 M�.

(iii) Our three-integral models are consistent with no black hole
as well as with a black hole as massive as 4.6 × 105 M�. This upper
limit is larger than the one allowed by anisotropic JAM models.

(iv) Simulations show that the model without a black hole is
stable against axisymmetric perturbations. This stability is derived
from the large Toomre-Q of the system.

Figure 10. Profiles of 2D (top) and 3D (bottom) vertical anisotropy. The
black, blue, green and red lines correspond to M• = 0, 0.8, 1.23 and 3.0 ×
105 M�, respectively. The dashed lines correspond to assuming that the
nuclear cluster is inclined at 83◦ instead of being perfectly edge-on.

 by guest on February 11, 2013
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Dynamical models of the NC in NGC 4244 2985

(v) Regardless of whether a black hole is present or not, and
whether the nuclear cluster is perfectly edge-on or not, βz and Bz

are both negative. Accretion of an SC of as little as 13 per cent
by mass is enough to drive βz to positive values, regardless of the
orbital geometry. It remains unclear, therefore, how βz < 0 arose.
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Jahnke K., Macciò A. V., 2011, ApJ, 734, 92
Jarrett T. H., Chester T., Cutri R., Schneider S. E., Huchra J. P., 2003, AJ,

125, 525
Johansson P. H., Naab T., Burkert A., 2009, ApJ, 690, 802
Kazantzidis S. et al., 2005, ApJ, 623, L67
King A., 2003, ApJ, 596, L27
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Sérsic J. L., 1968, Atlas de galaxias australes. Observatorio Astronomico,

Cordoba
Seth A. C., Dalcanton J. J., de Jong R. S., 2005a, AJ, 129, 1331
Seth A. C., Dalcanton J. J., de Jong R. S., 2005b, AJ, 130, 1574
Seth A. C., Dalcanton J. J., Hodge P. W., Debattista V. P., 2006, AJ, 132,

2539
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