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ABSTRACT
We introduce the study of box/peanut (B/P) bulges in the action space of the initial axisymmetric system. We explore where
populations with different actions end up once a bar forms and a B/P bulge develops. We find that the density bimodality due
to the B/P bulge (the X-shape) is better traced by populations with low radial, JR,0, or vertical, Jz,0, actions, or high azimuthal
action, Jφ,0. Generally, populations separated by JR,0 have a greater variation in bar strength and vertical heating than those
separated by Jz,0. While the bar substantially weakens the initial vertical gradient of Jz,0, it also drives a strikingly monotonic
vertical profile of JR,0. We then use these results to guide us in assigning metallicity to star particles in a pure N-body model.
Because stellar metallicity in unbarred galaxies depends on age as well as radial and vertical positions, the initial actions are
particularly well suited for assigning metallicities. We argue that assigning metallicities based on single actions, or on positions,
results in metallicity distributions inconsistent with those observed in real galaxies. We therefore use all three actions to assign
metallicity to an N-body model by comparing with the actions of a star-forming, unbarred simulation. The resulting metallicity
distribution is pinched on the vertical axis, has a realistic vertical gradient, and has a stronger X-shape in metal-rich populations,
as found in real galaxies.

Key words: Galaxy: abundances – Galaxy: bulge – Galaxy: evolution – Galaxy: stellar content – Galaxy: structure – galaxies:
bulges.

1 IN T RO D U C T I O N

Among the integrals of motion that have been used to study the Milky
Way (MW), actions have found particular favour in part because they
can be computed directly from stellar orbits (Binney & Tremaine
2008), or approximated from instantaneous positions and velocities
under the assumption that the potential is locally of Stäckel form
(Binney 2012). The adiabatic growth of the MW’s mass conserves
the actions and stars should retain some memory of the state of the
MW when the stars were born. However, various resonant processes
alter the actions. Scattering, such as by giant molecular clouds, drives
a slow diffusion in action space (Binney & Lacey 1988) that manifests
as the slow heating of stellar populations (Spitzer & Schwarzschild
1951, 1953; Wielen 1977; Icke 1982; Lacey 1984; Villumsen 1985).
Scattering can be viewed as the resonant response to collective
modes excited by fluctuations (Nelson & Tremaine 1999; Heyvaerts
2010; Sellwood 2013, 2015; Heyvaerts et al. 2017; Fouvry & Bar-
Or 2018). Actions are changed more substantially at resonances of
global perturbations, such as the inner and outer Lindblad resonances
(Barbanis & Woltjer 1967; Lynden-Bell & Kalnajs 1972; Carlberg &
Sellwood 1985), and the corotation resonance (Sellwood & Binney
2002; Roškar et al. 2012; Daniel & Wyse 2015) of bars and spirals.
The resulting diffusion in action space can be anisotropic; for instance
during the migration driven by the spiral corotation resonance, the
radial action is largely conserved, while the azimuthal action changes
dramatically (Sellwood & Binney 2002; Roškar et al. 2012). The

� E-mail: vpdebattista@gmail.com

vertical action is conserved on average during corotation migration,
but not in detail (on a star by star basis), because of vertical resonances
(Solway, Sellwood & Schönrich 2012; Vera-Ciro & D’Onghia 2016).

During dynamical instabilities, the potential can change rapidly. In
particular, the bar (Toomre 1981; Sellwood 1981) and the buckling
instabilities (Raha et al. 1991) are generally violent and unlikely
to conserve the actions. Notwithstanding this, the initial actions
determine how the stars react to the perturbation and thus help in
understanding the final distributions of stars within a B/P bulge
once it forms. Debattista et al. (2017) showed that the initial radial
random motions play a large role in determining the morphology
of different populations within the B/P bulge. The formation of
B/P bulges has a long history of study using numerical simulations
(Combes & Sanders 1981; Combes et al. 1990; Pfenniger & Friedli
1991; Raha et al. 1991; Merritt & Sellwood 1994; Berentzen et al.
1998; O’Neill & Dubinski 2003; Debattista et al. 2004, 2005,
2006; Martinez-Valpuesta & Shlosman 2004; Athanassoula 2005;
Bureau & Athanassoula 2005; Martinez-Valpuesta, Shlosman &
Heller 2006; Shen et al. 2010; Martinez-Valpuesta & Gerhard
2011, 2013; Li & Shen 2012, 2015; Saha & Gerhard 2013; Saha,
Pfenniger & Taam 2013; Di Matteo et al. 2014, 2015; Di Matteo 2016;
Fragkoudi et al. 2017, 2018; Łokas 2019; Smirnov & Sotnikova 2019;
Collier 2020). In this paper, we introduce the study of B/P bulges in
the space of the initial actions. This leads to new insights into how
B/P bulges form and suggests new avenues of study.

A further motivation for exploring how initial actions map into
a B/P bulge once one forms is that we can use the actions to
assign stellar populations to the bulge. Compared with pure N-body
simulations, simulations that include the physics of gas and star
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formation remain expensive and do not permit rapid explorations
of a large parameter space, which are needed to test ideas of bulge
formation. With the European Space Agency’s Gaia mission now
in its second data release and the third data release imminent, such
models are vital for a detailed understanding of the formation of the
MW’s bulge. Therefore a prescription for assigning stellar population
properties (ages, metallicities, abundances, etc.) to the star particles
in pure N-body simulations would be very valuable. This action-
based metallicity prescription is different from past prescriptions
based solely on position and membership in the thin or thick disc
(e.g. Bekki & Tsujimoto 2011; Martinez-Valpuesta & Gerhard 2013;
Di Matteo 2016) because stars at any particular location can be a mix
of very different metallicities (Hayden et al. 2015).

This paper is organized as follows. Section 2 presents the simu-
lation suite used in this paper. Section 3 presents the evolution of
stellar populations tagged by actions in a fiducial simulation, while
Section 4 generalizes these results to the entire simulation suite. In
Section 5, we consider prescriptions for assigning metallicity to stars
based on their initial actions. We discuss our results and present
our conclusions in Section 6. The deconstruction of barred models
by actions has never been presented before. Therefore in the online
version of the paper the appendices present figures for a standard
analysis of all the other simulations.

2 SI M U L AT I O N S

We use a suite of pure N-body simulations to track stars based on
their actions. The models were set-up using GALACTICS (Kuijken &
Dubinski 1995; Widrow & Dubinski 2005; Widrow, Pym & Dubinski
2008); they are comprised of one or two discs in a truncated Navarro–
Frenk–White (NFW) dark matter halo (Navarro, Frenk & White
1996):

ρ(r) = 22−γ σ 2
h

4πa2
h

C(r)

(r/ah)γ (1 + r/ah)3−γ
, (1)

(Widrow et al. 2008), where the cut-off function C(r) smoothly
truncates the model at a finite radius:

C(r) = 1

2
erfc

(
r − rh√

2δrh

)
. (2)

For all models we set σh = 400 km s−1, ah = 16.7 kpc, γ = 0.873,
rh = 100 kpc, and δrh = 25 kpc.

The discs are exponential with an isothermal vertical profile:

�(R, z) = �0 exp(−R/Rd) sech2(z/zd), (3)

where Rd and zd are the disc’s scale-length and scale-height, respec-
tively. For models 1–5, we set Md = 2π�0Rd

2 = 5.2 × 1010 M� and
Rd = 2.4 kpc. Fig. 1 of Debattista et al. (2017) shows the rotation
curve of these systems, which reveals that the galaxy is baryon-
dominated out to ∼10 kpc. In this way, the models resemble the
MW (Cole & Binney 2017). The kinematics of the discs are set such
that the radial velocity dispersion, σ R, decreases exponentially

σ 2
R(R) = σ 2

R0 exp(−R/Rσ ). (4)

We set Rσ = 2.5 kpc. In models 1–5, we vary the radial and vertical
dispersions as listed in Table 1. Our fiducial model is model 2, while
models 1 and 3 bracket it in radial random motions, and 4 and 5
bracket it in vertical random motions (i.e. thickness). With these
choices the minimum of the Toomre-Q profiles ranges from 0.8 to
1.5. We use 6 × 106 particles in the disc and 4 × 106 particles in
the halo. Thus, disc particles have a mass �9 × 103 M�, while halo
particles have mass �1.7 × 105 M�.

Table 1. The models used in this paper. σR0 is the disc’s central radial
velocity dispersion(s), zd is the disc scale height(s), and ri, j is the Pearson r
for the correlation between actions Ji,0 and Jj,0.

Model σR0 zd rφ, R rφ, z rR, z

(km s−1) (pc)

1 90 300 −0.39 −0.34 0.18
2 128 300 −0.41 −0.35 0.19
3 165 300 −0.41 −0.36 0.18
4 128 150 −0.40 −0.37 0.20
5 128 600 −0.42 −0.32 0.18
T1 60+90 100+400 −0.18 −0.25 0.24
T5 100+140 300+900 −0.26 −0.25 0.19
HD1 45 300 −0.38 −0.32 0.16
HD2 60 300 −0.39 −0.33 0.18

Figure 1. The rotation curve of the halo-dominated models, HD1 and HD2.
The solid (black) line shows the total rotation curve, while the dashed (red)
and dotted (blue) lines show the disc and halo contributions, respectively.

Our simulation suite also includes two thin+thick disc models,
T1 and T5, the former taken from Debattista et al. (2017). The
two discs both have Rd = 2.4 kpc, each of mass 2.6 × 1010 M�, so
the total stellar mass is the same as in models 1–5. In model T1,
the thin disc has (zd, σR0, Rσ ) = (100 pc, 60 km s−1, 4.5 kpc), while
for the thick disc these values are (400 pc, 90 km s−1, 2.5 kpc). The
evolution of model T1 is described in section 3.2 of Debattista et al.
(2017). In model T5, which has not been presented elsewhere, we set
a thin disc with (zd, σR0, Rσ ) = (300 pc, 100 km s−1, 4.5 kpc), while
for the thick disc these parameters are (900 pc, 140 km s−1, 3.5 kpc).
The dark matter halo of both models is the same as that in models 1–5.

We also include two dark matter-dominated systems, models HD1
and HD2 (‘halo dominated’), in which the dark matter and baryons
contribute about equally to the inner rotation curve, as shown in
Fig. 1. In these models we keep the same halo density profile as in
the other models, and the same disc scale-length, Rd, scale-height,
zd, and dispersion scale-length, Rσ , as in the fiducial model. The only
two differences are that we lower the mass of the disc to 35 per cent
of the fiducial model and lower the central velocity dispersion to have
Toomre-Q profiles similar to model 1 (HD1) and model 2 (HD2).

The models were evolved with PKDGRAV (Stadel 2001), using
a particle softening of ε = 50 pc and ε = 100 pc for star and halo
particles, respectively, in all the simulations. The base time-step is

t = 5 Myr and is refined such that each particle’s time-step satisfies
δt = 
t/2n < η

√
ε/ag , where ag is the acceleration at the particle’s

current position. We use η = 0.2 and set the opening angle of the tree
code gravity calculation θ = 0.7. We evolve the models for 5 Gyr,
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Figure 2. The global bar (top) and buckling (bottom) amplitudes of the simulation suite. Note that both vertical and horizontal axes change between the different
panels. All models form a bar and buckle, but there is a wide range of buckling strengths.

except for models HD1 and HD2, which we evolve for 10 Gyr since
their bars take longer to form. During this time a bar forms and
buckles, resulting in a B/P bulge. At the end of the simulations, we
align the bars along the x-axis to facilitate our analysis and inter-
comparison.

Fig. 2 presents the evolution of the bar and the buckling global
amplitudes of the full simulation suite. We define these amplitudes
as

Abar =
∣∣∣∣
∑

k mke2iφk∑
k mk

∣∣∣∣ , (5)

and

Abuck =
∣∣∣∣
∑

k zkmke2iφk∑
k mk

∣∣∣∣ , (6)

where mk, zk, and φk are the mass, vertical position, and azimuthal
angle of particle k and the sums are over all star particles (e.g.
Sellwood & Athanassoula 1986; Debattista et al. 2006). The models
exhibit a range of bar growth rates and bar strengths. All bars weaken
at buckling. By the end of the simulations, most of the bars have
started to grow again. The fiducial model 2 forms a bar at t ∼ 1 Gyr
and buckles at t ∼ 3 Gyr. The cooler model 1 forms its bar faster
and buckles at t ∼ 3.7 Gyr. The hotter model 3 forms its bar later
still, but still buckles at t ∼ 3.7 Gyr. The thinner (thicker) model 4
(5) forms earlier (later). Buckling in model 5 is the strongest of the
entire simulation suite. The bar in model T1 forms quite rapidly and
buckles quite mildly, whereas model T5 forms a bar somewhat later
and undergoes a strong buckling. Model HD1 forms a bar at ∼4 Gyr,
and buckles at 6 Gyr. After t ∼ 7 Gyr Abuck rises monotonically but
this reflects a bend in the bar rather than a buckling. Finally, model
HD2 forms a bar at 7 Gyr and buckles at t ∼ 9.2 Gyr.

Fig. 3 presents a view of model 2 at the start and end of the
simulation. The main analysis presented will focus on this model.

Plots similar to those for model 2 for the rest of the simulation suite
are presented in the Appendices of the online edition.

3 EVO L U T I O N IN IN I T I A L AC T I O N SPAC E

We use AGAMA (Vasiliev 2019) to measure the actions in the radial,
vertical, and azimuthal directions at t = 0. We compute the potential
of the disc and halo separately, assuming spherical symmetry for
the halo and a flattened axisymmetric distribution for the disc. We
have verified that the total potential computed this way reproduces
the rotation curve. We then compute the actions assuming the local
axisymmetric Stäckel fudge (Binney 2012).

We treat the actions computed at t = 0 as tags for stellar particles at
the end of the simulation. We stress that at the end of the simulations,
these are still the actions computed for the initial conditions. In
essence, we are tracing where stars end up based on their initial
actions. In order to make this evident at all times, we subscript
actions with a ‘0’. Thus, our notation for radial, azimuthal, and
vertical action is (JR,0, Jφ,0, Jz,0). This does not mean that we are
assuming that the actions are conserved during the process of bar
and B/P bulge formation.

Since, for a finite disc, both the vertical and radial velocity dis-
persion must decrease radially, both Jz,0 and JR,0 must be correlated
with radius, and therefore with Jφ,0, and possibly with each other.
Table 1 lists the Pearson r values of the correlations between all
pairs of actions in the various simulations. The largest absolute
Pearson r value is 0.42 for the correlation between Jφ,0 and JR,0 in
model 5. The correlations are weakest between JR,0 and Jz,0 in most
cases. Frequencies, on the other hand, are much more covariant, with
the Pearson r between the radial frequency, 
R, 0, and the vertical
frequency, 
z, 0, of 0.55 in the fiducial model, and 0.70 in model 5.
For this reason, we do not consider the frequencies in any of our
analysis.

MNRAS 498, 3334–3350 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/3/3334/5902407 by U
niversity of C

entral Lancashire user on 01 O
ctober 2020



B/P bulges in action space 3337

Figure 3. The density distribution of model 2 at t = 0 (left) and at the end of the simulation, at t = 5 Gyr, (right) for three different projections. The density
levels are arbitrary. A prominent bar, with a B/P-shaped bulge, has formed by t = 5 Gyr. The bar has been rotated into the x-axis.

Part of our analysis consists of splitting the models into quartiles
of their action distributions. The ranges of actions in these quartiles
for each model are listed in Table 2.

3.1 Dependence of the bar strength on the actions

Fig. 4 shows the initial and final density distributions in the lowest
and highest quartiles of each action (listed in Table 2). The middle
row shows the evolution of the JR,0 quartiles. Initially, the population
with the largest JR,0 is concentrated towards the centre, while those in
the lowest JR,0 quartile are more radially extended. This continues to
be true once the bar forms. At t = 5 Gyr, the bar is visibly stronger in
the lowest JR,0 quartile. The top row reveals a very similar behaviour
for Jz,0 both before and after the bar forms. Compared with the bar
in the JR,0 quartiles, the bar is weaker in the lowest Jz,0 quartile
and stronger at the highest one; that is, there is a larger range in the
bar strength when populations are separated by JR,0 than when they
are separated by Jz,0. The radial action therefore seems to be a more
important factor in determining the bar strength of a given population
than is the vertical action. The third row shows Jφ,0 that reveals that
Jφ,0 increases with radius, as expected. The lowest Jφ,0 quartile is
almost completely part of the bar at 5 Gyr but is less peanut-shaped
viewed edge-on, while less of the highest Jφ,0 quartile ends up in the
bar but is peanut shaped when viewed edge-on.

We define the mth Fourier amplitude of a population as

am(P ) =
∣∣∣∣
∑

k∈P mkeimφk∑
k∈P mk

∣∣∣∣ , (7)

where particle k is in the population P, and mk and φk are its mass
and azimuthal angle. Fig. 5 shows the dependence of a2(J), the
bar strength of action populations, on the actions. In the (Jφ,0,JR,0)
plane, a large a2(J) is present at log(Jφ,0/[kpc km s−1]) � 2.8, beyond
which is a spiral, which produces the weak a2(J) in the outer disc,
i.e. at large Jφ,0. In the (Jφ,0, Jz,0) plane, a2(J) appears more uniform

across Jz,0 at fixed Jφ,0. As a result, a2(J) reaches larger values in the
(Jφ,0, JR,0) plane than in the (Jφ,0, Jz,0) plane. In the (JR,0, Jz,0) plane,
the bar appears as two branches, one at log(Jz,0/[kpc km s−1]) ∼ 1.5,
and the other at log(JR,0/[kpc km s−1]) ∼ 1.7. The branch at large
Jz,0 is comprised of star particles at R � 3 kpc, while the stars at the
large JR,0 branch dominate at larger radii.

Fig. 6 shows the radial profiles of the m = 2 and m = 4 amplitudes,
a2(R) and a4(R), for the different quartiles. The bar is weaker in the
highest JR,0 quartile. The differences in a2(R) and a4(R) between
different Jz,0 quartiles are less pronounced than in the JR,0 quartiles.

3.2 Mean-action maps

Fig. 7 shows the distributions of mean actions in the face-on view
of the model at t = 0 and at t = 5 Gyr. At t = 0,〈Jφ,0〉 increases
radially outwards, while 〈Jz,0〉 decreases radially. Instead, 〈JR,0〉
peaks at R � 3.8 kpc. At t = 5 Gyr, 〈Jφ,0〉 is elongated along the
major axis of the bar. In contrast, 〈JR,0〉 and, to a lesser extent,
〈Jz,0〉 are elongated along the bar’s minor axis at small radii. These
orthogonal orientations are due to the fact that stars with small JR,0 or
Jz,0 are more elongated along the bar than those with large JR,0 or Jz,0

(Fig. 4). The difference in elongations is weaker for Jz,0, and therefore
the overall elongation along the y-axis is weaker for this action.

Fig. 8 presents maps of the mean actions in the (x, z) plane (i.e.
edge-on) at t = 0 (left-hand panels) and at t = 5 Gyr (i.e. with
the bar viewed side-on, middle panels), and in the (y, z) plane at
5 Gyr (i.e. with the bar viewed end-on, right-hand panels). At t =
0, 〈Jφ,0〉 increases in a radial direction, while 〈Jz,0〉 increases in the
vertical direction. The contours of 〈JR,0〉 have a more complicated
shape, generally increasing in the vertical direction and decreasing
in the radial direction. The peak of 〈JR,0〉 is at R � 3.8 kpc off the
mid-plane. At the end of the simulation, the contours of the 〈Jφ,0〉
distribution are centred on the origin and are quite vertical. Instead,
both 〈JR,0〉 and 〈Jz,0〉 have contours that are pinched when the bar is
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Table 2. Action quartiles of the models.

Model Action First quartile Second quartile Third quartile Fourth quartile
(kpc km s−1) (kpc km s−1) (kpc km s−1) (kpc km s−1)

1 Jz,0 <1.9 1.9–5.0 5.0–11.5 >11.5
2 Jz,0 <1.8 1.8–5.0 5.0–11.6 >11.6
3 Jz,0 <1.8 1.8–4.9 4.9–11.7 >11.7
4 Jz,0 <0.6 0.6–1.8 1.8–4.2 >4.2
5 Jz,0 <5.3 5.3–13.9 13.9–31.4 >31.4
T1 Jz,0 <0.7 0.7–2.2 2.2–7.9 >7.9
T5 Jz,0 <3.2 3.2–10 10–28 >28
HD1 Jz,0 <1.2 1.2–3.3 3.3–7.4 >7.4
HD2 Jz,0 <1.2 1.2–3.3 3.3–7.5 >7.5

1 JR,0 <4 4–12 12–27 >27
2 JR,0 <9 9–27 27–65 >65
3 JR,0 <17 17–53 53–130 >130
4 JR,0 <9 9–27 27–64 >64
5 JR,0 <9 9–27 27–67 >67
T1 JR,0 <7 7–19 19–44 >44
T5 JR,0 <18 18–48 48–106 >106
HD1 JR,0 <1 1–4 4–9 >9
HD2 JR,0 <2 2–7 7–16 >16

1 Jφ,0 <348 348–822 822–1473 >1473
2 Jφ,0 <255 255–731 731–1415 >1415
3 Jφ,0 <163 163–568 568–1315 >1315
4 Jφ,0 <265 265–736 736–1406 >1406
5 Jφ,0 <234 234–712 712–1414 >1414
T1 Jφ,0 <336 336–768 768–1394 >1394
T5 Jφ,0 <223 223–639 639–1282 >1282
HD1 Jφ,0 <278 278–626 626–1139 >1139
HD2 Jφ,0 <258 258–609 609–1127 >1127

viewed side-on. The map of 〈Jz,0〉 has a peak on the minor axis but
with a quite low gradient, and almost vertical contours. The map of
〈JR,0〉 also has a peak on the minor axis but the contours are now
more peanut shaped. With the bar seen end-on (right column), the
maps of 〈Jφ,0〉 and Jz,0 appear hourglass shaped. The map of 〈JR,0〉
in this projection has a significant vertical gradient and exhibits a
‘mushroom cap’ shape of high 〈JR,0〉 at large |z|.

3.3 Vertical profiles in the bulge

Fig. 8 showed that the formation of the B/P bulge changes the vertical
gradients of the actions in the inner galaxy. Fig. 9 explores the
evolution of the vertical profiles of the actions in the bulge region,
defined as inside Rd = 2.4 kpc (we have confirmed that the trends
shown here are similar inside at least 3Rd, but this is too large a radius
for the B/P bulge of some of the other models, such as model 1). The
initially vertically declining profile of 〈Jφ,0〉 is transformed into a
rapidly rising profile, which peaks at |z| � 2 kpc, and then declines
slowly beyond. The initially monotonically increasing 〈Jz,0〉 profile
is almost completely flattened by the formation of the B/P bulge.
Conversely, the initially rather flat profile of 〈JR,0〉 is transformed by
the bar into a monotonically rising profile, indicating that stars with
the largest radial motions are the ones that rise to the largest heights.

Fig. 10 shows the vertical density profile for all stars inside 2.4 kpc
(black points) and for the same stars separated into low and high
action halves. The low and high action profiles are quite parallel, and
overlap for Jφ,0 and Jz,0. However, the vertical profiles of the low and
high JR,0 diverge, with the density of low JR,0 stars, declining more
rapidly than that of the high JR,0. Above 3 kpc essentially all stars
are from the high JR,0 half.

3.4 Bimodal (X-shaped) distributions

Fig. 11 shows the density distribution of stars at different heights
for stars separated into the four quartiles of Jz,0 (left), JR,0 (centre),
and Jφ,0 (right) listed in Table 2. All exhibit bimodal distributions
for at least some quartiles. The separations between the peaks at
fixed |z| increase with Jφ,0 and decrease with increasing JR,0 and
Jz,0. Moreover, these separations increase with larger |z|, i.e. the
distributions are X-shaped. The behaviour of the density distributions
separated by JR,0 and Jz,0 are somewhat similar. The separation
appears first in Jφ,0, followed by Jz,0, while JR,0 is the last to show
the bimodality. Of the three actions, the separation between the peaks
is largest in Jφ,0.

3.5 Vertical heating and radial cooling

We define the thickness of stellar populations, hz, as the standard
deviation of the vertical positions of stars. The left-hand panels of
Fig. 12 show the evolution of the thickness in (JR,0, Jz,0) space. At
t = 0, the thickness is a strong function of Jz,0, which merely shows
that the actions are calculated properly. The contours of constant
hz are not horizontal, as a consequence of the radial dependence of
the potential. After the B/P bulge forms, at 5 Gyr, the thickness
increases monotonically with JR,0, with the thickest populations
those at largest JR,0. The thickness increases with Jz,0 up to a point,
but then decreases again, with the peak reached never as high as
that in JR,0. The map of the change in thickness between the final
and initial states, 
hz, shows that 
hz increases most strongly
with increasing JR,0. Surprisingly vertical heating is negative, i.e.
stellar populations become thinner, at the largest Jz,0. Vertical heating
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Figure 4. Evolution of the mass distribution in model 2 separated into action quartiles. At top is Jz,0, followed by JR,0, while at bottom is Jφ,0. The first and
third columns show the lowest quartile, while the second and fourth columns show the highest quartile. The two left columns show t = 0, while the two right
columns show the end of the simulation, at 5 Gyr.

therefore is primarily determined by JR,0 and substantially less by
Jz,0. A comparable figure for the vertical velocity dispersion, σ z, not
shown here, is very similar to the left column of Fig. 12, including
having a population with 
σz < 0.

Conversely, we expect σ R should also decrease in the populations
with large JR,0. We test this prediction in the right-hand panels of
Fig. 12, which show that although most of the system heats radially,
all populations at log(JR,0/[kpc km s−1]) � 2.2 cool. The contour
with 
σ R = 0, shown by the dashed grey line, is surprisingly vertical
considering that the bar instability increases the radial random
motion, driving σ R up, and setting up the radial anisotropy that drives
the buckling instability (Araki 1985; Merritt & Sellwood 1994). The
fraction of the disc that radially cools is larger than that which cools
vertically.

4 D IF F EREN T INITIAL C ONDITIONS

The analysis thus far has considered only the fiducial model 2. Now,
we consolidate these results by considering the rest of the simulation
suite. The appendices present figures similar to Figs 3–12 for the rest
of the models. This section discusses trends that arise from varying
the radial random motion, varying the thickness, from thin+thick

disc structure and from a high dark matter fraction. Section 4.5
provides a synthesis of the simulation suite.

4.1 Varying the radial velocity dispersion

Models 1 and 3 are initially radially cooler and hotter, respectively,
than the fiducial model 2. Model 1 has the narrowest range of JR,0

of any of the baryon-dominated models (the model has Toomre-Q
∼ 0.8 over a short radial range). The bar strength barely varies with
JR,0 or Jz,0, and this is the only baryon-dominated model in which
the vertical gradient is more prominent in Jφ,0 than in JR,0, reflecting
on the quite narrow range of JR,0. In the inner Rd, the separation
of the vertical profiles of the action halves is larger in Jφ,0 than in
JR,0. In model 3, the bar amplitude depends strongly on JR,0 and
less so on Jz,0. In the face-on distributions, the peaks in 〈JR,0〉 on the
minor axis of the bar become more prominent as the radial random
motion increases. In the side-on view, pinching of 〈JR,0〉 is present
in all three models. In model 3, the arms of the X-shape become
evident at larger height for both JR,0 and Jz,0. In all three models,
the separation of peaks in the bimodality is strongest in Jφ,0, with
the highest quartile always being the most widely separated. All
three models are thickest, and thicken the most, at the largest JR,0,
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Figure 5. The strength of the m = 2 Fourier moment, a2(J), in model 2 as
a function of the initial actions. Only bins with more than 200 particles are
shown. The large values of a2(J) in the region at log(Jφ,0/[kpc km s−1]) � 2.8
are produced by the bar, while spirals are responsible for the large values
at larger Jφ,0. The vertical and horizontal dashed black lines separate the
different quartiles in the associated actions.

Figure 6. The bar strength as a function of radius for model 2 split into
different action quartiles. The top row shows the m = 2 Fourier amplitudes,
while the bottom row shows the m = 4 amplitudes. At left the disc is split
into JR,0 quartiles, while at right into Jz,0 quartiles. The bar strength has a
larger dynamic range in JR,0 than it does in Jz,0.

including in model 1 that has the narrowest range of JR,0. In contrast,
populations with the largest Jz,0 always get thinner after the B/P
bulge develops. In model 3, the vertical profile of 〈JR,0〉 is still rising
at |z| = 5 kpc, and the vertical density of the low JR,0 half declines
rapidly, while that of the high JR,0 half dominates (over all action
halves) from |z| � 2 kpc.

4.2 Varying the thickness

Models 4 and 5 have thinner and thicker initial discs than the fiducial
model, respectively. Model 4 thickens considerably in spite of having
one of the mildest bucklings. Its initially low thickness ensures that
the strong bar that forms produces a highly anisotropic velocity
distribution, leading to a strong vertical heating. Because it starts out
so thin, the region of action space where the populations become
thinner is reduced compared to the fiducial model, but it is still
present. The final vertical profiles of the actions follow the same
trend as in the fiducial model. All four Jz,0 quartiles have nearly
identical bar amplitude, while a large weakening in the bar strength
and peanutiness is evident for the highest JR,0 quartile. In the initially
thickest disc, in model 5, the highest Jz,0 populations still end up
thinner after B/P formation over a more extended region than in
the fiducial model. The bar strength and peanutiness is still better
separated by JR,0, rather than by Jz,0. The bar amplitudes are similar
in all the populations except for the highest JR,0 one in model 4, while
in model 5 the difference is largely in the radius of the peak amplitude
rather than the peak itself. As in models 1–3, the populations
that thicken the most, and end up thickest, are the ones with the
largest JR,0.

4.3 Thin+thick disc models

Model T1 exhibits much the same trends as the fiducial model. The
bar is strongest in the lowest quartiles of JR,0 and Jz,0, with the
difference between bar strengths greater when the model is split by
JR,0 than by Jz,0. Only a very minor population of model T1 ends up
thinner at the end of the simulation. On the other hand, a significant
population becomes radially cooler.

In model T5, the population with the largest JR,0 has a significantly
weaker bar than in any other population. The smaller range of bar
strengths in Jz,0 quartiles compared to JR,0 quartiles is particularly
clear in this case and the highest JR,0 population has a4 � 0. The
vertical gradient in 〈Jz,0〉 is considerably weakened by bar and B/P-
bulge formation, whilst, once more, an enhanced gradient in 〈JR,0〉
develops. Fig. 13 shows the final vertical density profile of model T5
in the inner disc, as well as the same stars separated into halves of JR,0,
and into those from the thin and thick discs. At large heights, stars are
more likely to have originated from the higher JR,0 population than
they are from the thick disc. Even when there is a thin and a thick
disc dichotomy to start with, the population that ends up thickest,
and thickens the most, is still the one with the largest JR,0. As in
the fiducial model, a significant population cools vertically, while a
different, more sizeable, population cools radially.

4.4 Dark-matter-dominated systems

The properties of model HD1 are similar to those of model 1. What
these two models have in common is a quite narrow range of JR,0

(see Table 2). As in model 1, the vertical profiles of the action
halves in the inner galaxy are more separated in Jφ,0 than in JR,0.
In addition, while the formation of the B/P bulge retains a vertical
gradient in JR,0, the resulting profile is shallower than at the start.
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Figure 7. The face-on surface density (white contours) and mean actions (colours and black contours) at t = 0 (left) and at t = 5 Gyr (right) in model 2.

Another similarity between the two models is that the X-shape has
comparable strength in all the action quartiles at large heights from
the mid-plane. Additionally, the bar amplitude is essentially identical
in all JR,0 and Jz,0 quartiles. The two peaks are clearly separated,
regardless of which action is considered. While a population that
cools vertically is readily apparent, unlike model 1 only a very

insignificant population cools radially. Model HD2 has a minimum
Toomre-Q ∼ 1.2, but it still has a narrower range of JR,0 than does
model 1. While in most respects, it behaves like model 2, the different
quartiles have very similar bar amplitudes, while the X-shape is very
similar across all the quartiles. Unlike model HD1, in model HD2, a
steeper vertical gradient in JR,0 develops.
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Figure 8. Actions in the (x, z) plane at t = 0 (left) and at the end of the simulation, at t = 5 Gyr (middle), and in the (y, z) plane (right) in model 2. From top to
bottom, we plot 〈Jz,0〉, 〈JR,0〉, and 〈Jφ,0〉. Particles are selected in the slice |y| < 2 kpc in the two left columns and in the slice |x| < 2 kpc in the right column.
Black contours show the actions, while white contours show the density.

4.5 Synthesis of the simulation suite

Overall, the simulations exhibit a number of important commonal-
ities. The dominant role of the radial action in predicting the final
distributions of stars in the B/P bulge is attested by the monotonically
increasing vertical heating with increasing JR,0, the monotonic ver-
tical profile of 〈JR,0〉 within the B/P bulge, and the larger separation
in bar strengths when stellar populations are separated by JR,0. All
the models end up thickest in the populations with the largest JR,0.
In all models, a bimodal distribution, i.e. an X-shape, is present at
some distance away from the mid-plane; the separation is largest at
the highest Jφ,0 and in the lowest JR,0 and Jz,0. The vertical density
profiles of the stars in the Jφ,0 and Jz,0 halves are quite parallel, but
diverge in the JR,0 halves. The only models that diverge significantly
from these trends are the ones with a narrow range of JR,0, which
happens when the initial disc dips below Q = 1.

5 ST ELLA R POP ULATION MODELLING

The chemistry of bulges provides an important constraint on their
formation. There are several observational trends that models of B/P
bulges need to satisfy. First, in the MW, the density bimodality, i.e.
the X-shape, is observed to be pronounced in metal-rich stars and
weak or absent in the metal-poor ones (Ness et al. 2012; Uttenthaler
et al. 2012; Rojas-Arriagada et al. 2014). Secondly, but related to
this, self-consistent chemo-hydrodynamical simulations (Debattista
et al. 2017, 2019; Athanassoula, Rodionov & Prantzos 2017) have
predicted more pinched metallicity distributions than the density
itself when viewed edge-on; this distribution has been confirmed in
real galaxies (Gonzalez et al. 2017). This trend is the equivalent of
the metallicity dependence of the X-shape, generalized to external
galaxies. Lastly, along the MW’s minor (vertical) axis, a metallicity
gradient is observed (Gonzalez et al. 2011, 2013; Ness et al. 2013;
Zoccali et al. 2017).

In order to explore the relation between the action trends found
above and the metallicity trends, we now develop a method for

assigning metallicity to star particles based on their actions. We
employ a self-consistent star-forming chemo-hydrodynamical sim-
ulation to determine how the metallicity depends on the actions in
an unbarred galaxy. We then use actions to map metallicity from the
star-forming simulation to the star particles in the fiducial, pure N-
body, model. Since the metallicity of stars in real galaxies depends,
if anything, on the actions before the bar forms, our emphasis here
on the initial actions is well-matched to the problem at hand. First,
however, we consider the limitations of modelling the metallicity
based on only single actions to motivate full three-action modelling.

5.1 Metallicities based on single actions

5.1.1 Metallicity based on Jφ,0 or initial radius

Martinez-Valpuesta & Gerhard (2013) investigated the origin of
the MW’s vertical metallicity gradient in pure N-body simulations
by assuming that the initial axisymmetric disc had a steep radial
metallicity gradient. They showed that in this case, a metallicity
gradient similar to the one observed arises. Consistent with this
result, the vertical profile of the mean initial radius, <R0 >, shown
in the bottom panel of Fig. 9, has a shallow declining profile at
t = 0, which is transformed into a rising profile, with a decreasing
gradient. The same happens in the full simulation suite but in many
cases the profile of <R0 > reaches a peak and then declines again.
These profiles are very similar to the profiles of Jφ,0, and assigning
metallicity by radius can be considered comparable to assignment
by the angular momentum.

Assuming metallicity that declines with increasing Jφ,0 results in
an X-shape that is stronger in metal-poor stars than in metal-rich ones.
Liu et al. (in progress) reach a similar conclusion. This can be seen in
Fig. 11, which shows that it is the populations with largest Jφ,0 that
are most widely separated, which is opposite to the trend observed
in the MW. Assigning metallicity by Jφ,0, or nearly equivalently, by
radius, therefore produces the wrong X-shape trends compared to
those observed in the MW.
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B/P bulges in action space 3343

Figure 9. The change in the vertical profiles of 〈Jz,0〉 (top row), 〈JR,0〉
(second row), 〈Jφ,0〉 (third row), and <R0 > (fourth row) in model 2. The
initial conditions are shown as (red) filled circles, while the final distribution
is shown as (black) filled squares. All quantities have been computed within
the inner Rd = 2.4 kpc.

Figure 10. The central vertical density profiles of stars in model 2 at t =
5 Gyr split into two equal samples of low and high actions, as indicated.
The full sample of stars is shown by the black line. The profiles have been
computed within the inner Rd = 2.4 kpc.

5.1.2 Metallicity based on Jz,0 or initial height

Assigning metallicity by Jz,0 is similar to assuming an initial vertical
metallicity gradient (although Jz,0 is a better measure of a popula-
tion’s thickness than the instantaneous height). Assuming metallicity
depends on Jz,0 produces an X-shape which is better traced by metal-
rich stars, and metallicity distributions that are pinched. For the
entire simulation suite, we observe that the initial vertical gradient in
Jz,0 is substantially flattened by the time the B/P bulge forms. Any
vertical metallicity gradients are therefore substantially weakened
and unlikely to be preserved. An observational test of metallicity
depending primarily on Jz,0 is that unbarred galaxies should have
steeper vertical gradients than barred ones. Since this appears not
to be the case (Molaeinezhad et al. 2017), we conclude that Jz,0 (or
height) is not a reliable way of assigning metallicities to particles.

5.1.3 Metallicity based on JR,0 or age

JR,0 measures the radial random motion; stars are generally born on
nearly circular orbits and slowly heat radially. Therefore, JR,0 might
be used as a proxy for age, particularly for thin discs. Assuming older
stars are more metal-poor would allow metallicity to be assigned
based on JR,0. This produces most of the trends observed in B/P
bulges, including a stronger X-shape in metal-rich stars, a vertical
metallicity gradient, which can be stronger than in unbarred galaxies,
and a pinched metallicity distribution when observed edge-on. The
vertical metallicity gradient arises naturally via the monotonically
rising profile of JR,0 produced by the buckling. Molaeinezhad et al.
(2017) find some evidence for a steeper metallicity gradient in barred
galaxies than in unbarred galaxies.

The principal drawback of using JR,0 for metallicity modelling
is that a single value of JR,0 corresponds to a wide range of Jφ,0,
with often very different bar strengths (see Fig. 5). Moreover, in our
simulation suite, JR,0 does not peak at the centre of the galaxy at t =
0 (see Fig. 7), which would require that the metallicity peaks away
from the centre. Furthermore, the peak of JR,0 is generally off the
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Figure 11. Density profiles along the x-axis (along which the bar is aligned) in model 2 at the end of the simulation, t = 5 Gyr, for different heights above the
mid-plane. At each height, the profiles are split into quartiles of the initial actions, as indicated in the top row, with the first quartile having the lowest values.
Only particles at |y| < 2 kpc are included. From left to right are shown the vertical, radial, and azimuthal actions.
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B/P bulges in action space 3345

Figure 12. Left: Evolution of hz, the thickness of stellar populations, in the (JR,0, Jz,0) plane of model 2. Right: Evolution of σR, the radial velocity dispersion
of stellar populations, in the (JR,0, Jz,0) plane of model 2. The top row shows t = 0 and the middle row shows the end of the simulation, t = 5 Gyr, both on a log
scale. The bottom row shows the difference, now on a linear scale. At large Jz,0 
hz < 0 i.e. the stellar populations become thinner after the B/P bulge forms
(bottom left). Similarly, at large JR,0, 
σR < 0, i.e. the stellar populations become radially cooler (bottom right). The dashed grey contours indicate 
hz = 0
(bottom left) and 
σR = 0 (bottom right). Solid contours indicate the density of stars and are spaced by factors of 10, with the peak set at 10 000 particles.
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Figure 13. The vertical density profile of stars within Rd = 2.4 kpc at t =
5 Gyr in model T5. The full profile (black) is split into thin and thick discs
(blue) and into low and high halves of JR,0 (red).

mid-plane (see Fig. 8). Therefore, a metallicity based only on JR,0 is
unlikely to be realistic.

5.1.4 Metallicity based on radial and vertical position

Bekki & Tsujimoto (2011) used the radial and vertical position of a
star particle in the initial axisymmetry system to assign metallicity.
Using the prescription of Bekki & Tsujimoto (2011), we find that
the X-shape has comparable strength in each metallicity population,
contrary to what is observed in the MW. Fundamentally, the problem
is that all star particles at a given position are treated the same when
they should have different ages, and therefore different JR,0 and
different metallicities.

We therefore conclude that assigning metallicities based on actions
requires all three actions. Next, we develop a method for such
modelling.

5.2 Three-action metallicity modelling

5.2.1 A star-forming donor

The star-forming model we use to connect actions and metallicities
is a generic example of the many MW-mass models we have
constructed and presented in the past (e.g. Roškar et al. 2008;
Loebman et al. 2011, 2016) but with the 5× higher resolution used
in Portaluri et al. (2017). It evolves self-consistently, with all stars
forming out of gas cooling off a hot corona. We use a slightly higher
supernova feedback efficiency than in those earlier works, at 4 × 1050

erg per supernova. All other parameters are identical to the earlier
works and will not be described here, but we anticipate describing
the evolution of this simulation in detail elsewhere.

We continue to compute actions using AGAMA (Vasiliev 2019),
assuming the model is axisymmetric and using the Stäckel fudge
approximation. While the model lacks a bar, it has prominent spirals;
as a result, the measured actions are disturbed by the spiral structure.
We compare with the actions 100 Myr later, during which time the

Figure 14. The mean metallicity of the star-forming simulation at 3 Gyr in
action space. Coloured contours show the mean radii of particles, as indicated.
Solid grey contours indicate the density of stars and are spaced by factors
of 10, with the peak set at 10 000 particles. Only bins with more than 100
particles are shown.

stars drift with respect to the spirals, and quantify the changes via
d(J) = FWHM(
J)/〈J〉, where FWHM(
J) is the full width at half-
maximum of the change in a particular action. We find changes
of d(JR) = 0.262, d(Jφ) = 0.048, and d(Jz) = 0.013. We do not
attempt to account for these variations in our action-based metallicity
mapping.

We use this simulation strictly to query the chemistry as a function
of the actions. We consider the model at t = 3 Gyr, on the premise
that this is a plausible time for when the bar of the MW formed.
Fig. 14 shows the density and mean metallicity of the star-forming
model in the action space at this time. The density distribution in the
(JR, Jz) plane is qualitatively similar to that in the (JR,0, Jz,0) plane
of the fiducial model (Fig. 12). We refer to this model from here on
as the ‘donor’ model.

5.2.2 Metallicity assignment from the actions

We now demonstrate assigning metallicities to star particles in
the fiducial N-body model 2 (hereafter ‘the target’), using the
metallicities of star particles in the the donor. Because the density
distribution, and the actions, in these two models are quite different,
we cannot assign metallicities by directly matching the actions. We
start by cutting the donor to only those particles within the volume
|x|, |y| ≤ 12 kpc and |z| ≤ 6 kpc. We then construct the cumulative
distribution functions, Fd, φ , Fd, R, and Fd, z, for log(JR), log(Jz),
and log(|Jφ |). (Here, the subscript ‘d’ refers to the donor model.)
After trimming their lower and upper 1 per cent, we compute the
average and standard deviation of the metallicity in bins in the
Fd, φ⊗Fd, R⊗Fd, z space of the donor. We then use the actions of
stars in the target to construct its cumulative distribution functions
of the actions Ft, φ , Ft, R, and Ft, z (where now the subscript ‘t’ refers
to the target model and we again use log of the actions). We then
assign a metallicity to star particles in the target by matching the
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Figure 15. Maps of the mean metallicity of target model 2 at t = 5 Gyr
based on metals mapped using the three actions as described in Section 5.2.2.
Top: Edge-on view with the bar seen side-on. Middle: Edge-on view with
the bar seen end-on. Bottom: Face-on view. Black contours show 〈[Fe/H]〉,
while white contours show the density.

cumulative distribution functions in the donor and the target, Ft =
Fd, by drawing a value of [Fe/H] from the Gaussian describing that
action bin.

The resulting metallicity maps for the target (fiducial) model at
t = 5 Gyr are shown in Fig. 15. Both edge-on views bear strong
resemblance to the metallicity maps of the barred star-forming
simulation of Debattista et al. (2017, their fig. 26). The metallicity
distribution is more pinched than the density in the side-on view.
Along the vertical axis the metallicity has a declining profile. In
order to compare the metallicity gradient with the MWs, the model
needs to be rescaled because its bar is much longer.1 Assuming
the MW has a bar of 5 kpc (Wegg, Gerhard & Portail 2015), we
obtain a metallicity gradient of −0.12 dex kpc−1, about half the

1We remind the reader that N-body simulations can always be rescaled this
way. If length is rescaled as L

′ = αL, then the time needs to be rescaled as
T

′ = α3/2T. In our case, with α = 5/9, time is rescaled by a factor of 0.4.

gradient measured by Gonzalez et al. (2013). Considering that this
model is very different from the MW, this is a quite promising result
(compared, for instance, with the much weaker vertical gradients in
the pure disc simulation of Bekki & Tsujimoto 2011) that implies
that the actions can be successfully used to assign metallicities to
particles of B/P bulges in N-body simulations.

The metallicity in the face-on view has hollows on the minor axis
of the bar, which are not observed in real galaxies. In real galaxies,
these regions are often found to have ‘star formation deserts’ (SFDs;
James & Percival 2016, 2018) with ages older than the average.
Stellar populations in the SFDs are slowly refilled by stars trapped
by the bar at a later stage (Donohoe-Keyes et al. 2019). Since our
N-body model lacks significant late time bar growth, the presence
of these hollows in our model is perhaps not surprising. For our
fiducial model, the [Fe/H] hollow is only ∼0.1 dex deep, and may
be relatively difficult to detect.

6 D ISCUSSION

Our primary goals in this paper have been to map the initial actions of
an axisymmetric disc into the properties of the B/P bulge that forms
via the bar, and to develop a simple action-based method to assign
metallicity to disc particles in order to compare with metallicity
trends observed in B/P bulges in general, and the MW in particular.
We have demonstrated a successful metallicity mapping technique.
The study of the role of actions in the development of B/P bulges
leads to several insights.

6.1 A statistical mechanical view

The simplest result to acknowledge is just how reliable the initial
actions are at predicting the final distributions of populations in the
B/P bulge. The bar and buckling instabilities are violent processes
(at least in these simulations), during which angular momentum
is redistributed, strong spirals propagate, and the bar first grows
exponentially in strength, then weakens abruptly. During this time,
resonances must be sweeping the phase space as the bar assem-
bles and then weakens. Orbital analyses of bars formed in self-
consistently evolving simulations typically find resonances well
populated (Valluri et al. 2016; Abbott et al. 2017). In most of the
simulations presented here the disc potential dominates over the
dark halo and the gravitational perturbations must therefore be large.
Yet in spite of all this roiling turmoil the structure that emerges
in the B/P is predetermined by the initial actions. Since energy is
being transformed between in-plane and vertical motions, the actions
cannot be conserved. The clear dependence on the initial conditions
indicates that the dynamical instabilities are not violent enough for
complete mixing to occur. Testing this is beyond our scope here, but
is worth investigating.

And yet we should not permit ourselves to uncritically accept that
the bar+buckling instabilities generally occur in nature with the full
vigour of our pure N-body simulations. It seems implausible that
galaxies often find themselves in a state so unstable that a substantial
reorganization of their states begins immediately, and with vigour.
Indeed, simulations that include gas find bars forming more slowly
and buckling much more gently (Berentzen et al. 1998; Debattista
et al. 2017), even in a cosmological context (Debattista et al. 2019).
The consequent energy redistribution that must occur is probably
milder.

None the less, nature presents examples of buckling bars (Erwin &
Debattista 2016; Li, Ho & Barth 2017), including in the presence of
gas. Whether these are events provoked by external perturbations, or
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driven by purely internal secular evolution is as yet unclear. However,
a simple model of bar and B/P-bulge formation that assumes rapid
violent buckling is able to reproduce the observed fraction of B/P
bulges and buckling bars (the known number of which is still less than
10) amidst barred galaxies (Erwin & Debattista 2016). Complicating
this simple picture is the observation that the fraction of barred
galaxies that host B/P bulges rises rapidly at log(M∗/ M�) � 10.4,
with no evidence that the (present day) gas fraction matters (Erwin &
Debattista 2017). Even more puzzling, this transitional mass appears
unchanged since redshift z � 1 (Kruk et al. 2019). Clearly, there
is still much to learn about B/P bulge formation and more detailed
study of stellar populations in the MW, and in external galaxies, may
provide clues to a better understanding.

6.2 Kinematic fractionation

Building on the work of Merritt & Sellwood (1994), Debattista et al.
(2017) argued that the vertical evolution of B/P bulges is driven
by the ability of stars to respond in phase with the vertical forcing
from a bending bar (through the buckling instability). Stars support
a vertical perturbation of m = 2 form so long as they satisfy the
condition:


z > 2(
φ − 
p), (8)

where 
z and 
φ are the vertical and rotational frequencies of the
star, respectively, and 
p is the pattern speed of the bar. Debattista
et al. (2017) demonstrated that 
z declines rapidly with the amplitude
of the vertical excursion, zmax, whereas 
φ does not. The separation
of stellar populations by the bar occurs because the larger asymmetric
drift (lower 
φ) of stars with larger radial random motions allows
them to remain in tune with the vertical forcing by the bar to greater
heights. This allows the star to gain vertical energy from the bending
wave until eventually it is deposited at a zmax, where the condition
of equation (8) is no longer satisfied. This zmax is larger for stars
with larger radial action because of their lower 
φ . For this reason,
they proposed that the radial random motion of stars determined the
vertical height stars can reach during buckling, with radially hotter
stars reaching larger heights.

Recently, Di Matteo et al. (2019) argued that the vertical dispersion
before the bar forms is just as important as the radial dispersion. We
have shown here that the vertical thickening of populations is a
strongly monotonic function of JR,0, but depends less strongly on
Jz,0. Indeed, we have seen that the populations with the largest Jz,0

generally become thinner after the formation of a B/P bulge, and
this population can be significant when the initial disc is thick. A
monotonically increasing vertical profile of 〈JR,0〉 develops in most
models as a result of B/P formation, while the vertical gradient in
〈Jz,0〉 is largely erased. Both these facts argue that the radial motions
are much more important for determining the final vertical thickening
of a population, as proposed by Debattista et al. (2017), and at
odds with the suggestion of Di Matteo et al. (2019). Nevertheless, a
thick, vertically hot, disc is also likely to be radially hot; as such the
combination of a thin and a thick disc is still likely to retain some of
the vertical gradient inherent in the different metallicities of the two
discs once a bar forms. The physical mechanism driving the final
metallicity gradient remains kinematic fractionation acting on stellar
populations with different radial actions, not on the vertical actions.

6.3 Insights from bulge chemistry

The vertical metallicity gradient (Zoccali et al. 2008; Gonzalez et al.
2011; Johnson et al. 2011, 2013) and the metallicity dependence

of the X-shape (Ness et al. 2012; Uttenthaler et al. 2012; Rojas-
Arriagada et al. 2014) constrain the formation of the MW’s bulge.
Bekki & Tsujimoto (2011) argued that, in single disc models with a
radial metallicity gradient, the vertical mixing of stars caused by the
bar produces too shallow a vertical metallicity gradient. Martinez-
Valpuesta & Gerhard (2013) subsequently showed that a significantly
steeper radial metallicity gradient, of ∼−0.4 dex/kpc, can indeed
be transformed into a vertical gradient similar to the observed. A
significant failure of this hypothesis is that the resulting bimodal
distance distribution in the bulge (the ‘X-shape’) is more prominent
in metal-poor populations, whereas in the MW the X-shape is more
prominent in metal-rich populations (Ness et al. 2012; Uttenthaler
et al. 2012; Rojas-Arriagada et al. 2014). An in-situ picture of the
vertical gradient relying on the superposition of a metal-rich thin disc
and a metal-poor thick disc (Bekki & Tsujimoto 2011; Di Matteo
2016), produces a gradient via the transition from one population
to another. An alternative approach to producing the observed
metallicity gradient was presented by Debattista et al. (2017) who
found, in their simulation with self-consistent star formation and
chemistry, a vertical metallicity gradient that resulted from the ability
of older, metal-poor stars to reach larger heights during the buckling
instability since they have larger radial random motion, compared
to slightly (∼1 Gyr) younger stars. The resulting X-shape is better
traced by the metal-rich populations, as observed. They also showed
that as a consequence the metallicity distribution is more peanut-
shaped than the density itself (see also Athanassoula et al. 2017; Buck
et al. 2018; Debattista et al. 2019). Such a metallicity distribution
has been confirmed in the edge-on galaxy NGC 4710, which hosts a
B/P bulge (Gonzalez et al. 2017).

These trends help constrain models of the evolution of B/P bulges.
We found that side-on maps of Jz,0 and JR,0 are pinched and that
the bimodal populations at fixed heights are less separated with
increasing action. These are trends reminiscent of what is observed
in the MW’s bulge. If metallicity depends on Jz,0 then a bimodality
forms but the formation of the bar and B/P bulge substantially
weakens the vertical gradient (Bekki & Tsujimoto 2011). In this case
we find that the initial vertical gradient is substantially weakened.
Instead metallicity based on JR,0 will produce a strong and monotonic
vertical gradient, as observed in the MW. This is an efficient way
to generate vertical gradients from a system in which the in-plane
random motions are a function of age by the time the bar forms.
However we argue that JR,0 by itself is not sufficient to properly
assign metallicities to particles. We show that assigning metallicities
using all three actions results in a model that has the right X-
shape metallicity variation and a vertical metallicity gradient not
very different from the MW’s.

6.4 Outlook for action-based metallicity assignment

At this time, pure N-body (collisionless) simulations with 108

particles do not represent significant computational difficulties (e.g.
Sellwood 2012; D’Onghia, Vogelsberger & Hernquist 2013). The
collisionless cosmological simulation of Potter, Stadel & Teyssier
(2017) employed 2 × 1012 particles, which required only a modest
350,000 node hours to complete. On the other hand, hydrodynamical
simulations with this number of particles constitute a huge compu-
tational effort. For instance, the Illustris TNG100 simulation, one of
the IllustrisTNG flagship runs with 1.2 × 1010 resolution elements,
required ∼18M cpu hours to complete (Nelson et al. 2018; Marinacci
et al. 2018; Pillepich et al. 2018; Naiman et al. 2018; Springel et al.
2018), with other runs in the IllustrisTNG suite requiring longer
for varying resolutions. While these are extreme examples (and also
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differ in their resolutions), they demonstrate the very different cost
of running pure N-body versus hydrodynamical simulations. Action-
based stellar-population modelling therefore holds great promise for
helping to understand the distribution of stellar populations within
B/P bulges by permitting rapid studies in parameter space using
N-body simulations.

We have presented a simple experiment in assigning chemistry
using the three actions. The model exhibits many of the trends of
real B/P bulges. Since our simulations are pure N-body, with no
star formation, their evolution covers only stellar populations extant
at the time of bar formation. Because the bar grows by trapping
disc particles, stars younger than the bar are not represented in
the simulations. However, since stars forming after the bar do not
substantially participate in the B/P bulge (Debattista et al. 2017),
this omission does not seriously affect our results on the stellar
populations of the B/P bulge itself. On the other hand, the stellar
populations of the disc, where star formation continues even after
the bar forms, cannot reliably be captured by our action-based
metallicity assignment. Nevertheless, we conclude that within the
main bulk of the B/P bulge itself, the action-based metallicity
assignment we have developed is a very useful tool for studying
the stellar distribution. The method can be adapted in a variety of
ways, including replacing the donor with an analytic prescription
for the metallicity-action relation, including more moments in the
metallicity distribution function of the donor, or mapping based on
machine learning techniques.

6.5 Summary

We have computed the actions of star particles in the initial conditions
of a suite of pure N-body simulations. We followed the particles to
the point where a B/P bulge forms, and examined how the initial
actions were distributed in the final B/P bulge. We also used a star-
forming simulation, matched in action space, to assign metallicity to
the particles of a pure N-body simulation. Our main results are:

(i) Both the radial action, JR,0, and the vertical action, Jz,0, separate
stellar populations such that those with lower actions support a
stronger, more elongated bar while those with higher actions host a
weaker bar. The bar strength has a greater dynamic range when stellar
populations are separated by JR,0 than by Jz,0 (see Section 3.1).

(ii) The central vertical profile of 〈Jz,0〉 is substantially flattened
by the formation of the B/P bulge. A vertical gradient develops in
〈Jφ,0〉 (and also in <R0 >, the mean radius of stars at t = 0), which
reaches a peak and then declines at larger heights. The initially rather
flat profile of 〈JR,0〉 is transformed into a monotonically rising profile
by the B/P bulge formation (see Sections 3.2 and 3.3).

(iii) Stellar populations separated by either JR,0 or Jz,0 display an
increasing separation of the peaks of the bimodality with increasing
height. The separation is stronger for the populations with lower
JR,0 and lower Jz,0, and higher Jφ,0. This different trend with Jφ,0

would imply a greater separation in the X-shape in metal-poor
populations if metallicity depended on angular momentum, or radius
(see Section 3.4).

(iv) The thickness at the end of the simulation, and the overall
vertical thickening, increases monotonically with JR,0. This is the
characteristic of kinematic fractionation described by Debattista
et al. (2017). In contrast, the thickening is peaked at intermediate
Jz,0, decreasing to larger values and becoming negative (i.e. the
populations become thinner) for the highest Jz,0. Conversely, the
populations with the largest JR,0 radially cool (see Section 3.5).

(v) Only models with a narrow range of JR,0 diverge from these
trends, and exhibiting a weak dependence of the bar strength and
X-shape on the actions. These contrary behaviours serve to further
illustrate the importance of the radial action in the development of
the trends observed in stellar populations observed in the MW (see
Section 4).

(vi) We demonstrate a simple action-based mapping for setting
the metallicity of star particles in a pure N-body simulation based
on their actions using the metallicity of particles in a star-forming
simulation. The resulting metallicity map of the galaxy seen edge-
on with the bar seen side-on is pinched, matching observations in
real galaxies and hydrodynamical models of barred galaxies (see
Section 5.2.2).

In future papers we will present further analysis of these models
and employ the action-based metallicity tagging to develop models
of the MW’s bulge chemistry.
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