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ABSTRACT

‘We model the formation of a bar plus box/peanut bulge (BP bulge) component in a Milky Way-like disc galaxy using simulations
of isolated multicomponent systems that evolve from equilibrium initial conditions. The simulations are designed to test the
hypothesis that the bar forms early on and thickens to create the bulge. To this end, our initial conditions include a stellar disc
with a Sérsic surface density profile and do not include any classical bulge component. We also include a gas disc, which is
important in regulating the growth of the bar. Our best-fitting model has an initial stellar disc with a Sérsic index of n = 1.75
and a gas disc with mass equal to 7 per cent of the mass of the stellar disc. The model reproduces the bar size, pattern speed, and

BP shape of the Milky Way’s bulge + bar.

Key words: methods: numerical — Galaxy: kinematics and dynamics — Galaxy: structure.

1 INTRODUCTION

The field of Galactic astronomy grew, in large part, out of attempts
to understand the formation, structure, and evolution of the Milky
Way (MW). Models of the Galaxy can vary in scope and level of
detail, depending on the questions that one intends to explore. At
one end, kinematic models for the Galaxy’s stellar components
provide the phase space distribution function (DF) of the stars
without regard for the gravitational potential (for some examples,
see Juri¢ et al. 2008; Bond et al. 2010; Binney 2010). By contrast,
equilibrium dynamical models include the DFs for all massive
components (stars, gas, and dark matter) as well as a self-consistent
model for the gravitational potential under the assumption that the
system is stationary (Kuijken & Dubinski 1995; Robin et al. 2003;
Widrow & Dubinski 2005; Binney 2012; McMillan 2017; Vasiliev
2019; Binney & Vasiliev 2023). In general, equilibrium models are
symmetric about the spin axis of the Galaxy and its mid-plane
and therefore cannot account for the Galaxy’s bar, spiral arms, or
warp. However, one can explore the formation of non-equilibrium
structures such as these by evolving equilibrium models using N-
body methods. This strategy, which dates back to the pioneering
work of Miller, Prendergast & Quirk (1970), Ostriker & Peebles
(1973), and others, exploits the fact that equilibrium models are
generally susceptible to global and local instabilities, which can
drive the formation of a central bar and spiral arms (for example,
see ch. 6 of Binney & Tremaine 2008, and references therein). The
question then is whether the instabilities in the initial system lead it
to evolve to a state that is consistent with present-day observations.

* E-mail: vpdebattista@gmail.com

As with most disc galaxies, the surface brightness profile of the
MW rises above an exponential near the centre. This excess light is
often attributed to a central bulge. Simulations of MW-like galaxies
typically model this through the inclusion of a slowly rotating
classical bulge (e.g. Fujii et al. 2019; D’Onghia & Aguerri 2020;
Tepper-Garcia et al. 2021), that is, a dynamically distinct, centrally
concentrated component, into their initial conditions (ICs). However,
there is compelling evidence that the MW has a box/peanut-shaped
(BP) bulge, that is, a rotationally supported stellar component
that formed through secular processes involving the thickening
of the bar (Kormendy & Kennicutt 2004; Shen et al. 2010b;
Debattista et al. 2017; Kormendy & Bender 2019). The appropriate
ICs to test this hypothesis therefore must be a bulgeless disc
galaxy.

Simulations of a MW-like galaxy must also reproduce the length,
strength, and pattern speed of the Galactic bar. Bar formation
proceeds within a resonant cavity of spiral density waves which
reflect between the centre and the corotation resonance (Toomre &
Toomre 1972). The resulting bars extend up to the largest radius
corresponding to the corotation of the slowest spiral that avoids an
inner Lindblad resonance (ILR). A higher central mass concentration,
such as that resulting from a bulge, raises the ILR curve, which
means that the spiral that can avoid an ILR must be faster, and
therefore the resonant cavity smaller, which results in a smaller bar
forming (Toomre & Toomre 1972; Sellwood 1985). Once formed,
bars evolve by shedding angular momentum to the dark matter
halo. As they do so, their pattern speed decreases and they grow
in length (e.g. Debattista & Sellwood 2000; Athanassoula 2003;
O’Neill & Dubinski 2003; Holley-Bockelmann, Weinberg & Katz
2005; Martinez-Valpuesta, Shlosman & Heller 2006; Weinberg &
Katz 2007; Sellwood 2016; Polyachenko, Berczik & Just 2016;
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Kataria & Shen 2022; Joshi & Widrow 2024). This process is very
efficient when the halo is centrally concentrated, which is the case
for NFW haloes. The rapid growth of the bar in models with cuspy
haloes can make it difficult to simultaneously satisfy observational
constraints on both the length and pattern speed. For example,
the bar in the model of Tepper-Garcia et al. (2021) was able to
match the pattern speed of the MW only for a brief time interval,
~ 2 — 3 Gyr (depending on the specific constraint selected). Not only
does this rapid growth produce bars which are too large compared
with observations (Erwin 2005), but the high slowdown rate reduces
the efficiency at which resonances can trap stars (e.g. Weinberg 1985;
Chiba, Friske & Schonrich 2021).

It is possible that the failure of simulations to reproduce the
observed pattern speed and length of the bar is due to an incorrect
model of the dark halo since both the growth and spin-down of
the bar are driven, to a large extent, by a transfer of angular
momentum from the disc to the halo. Athanassoula (2003) showed
that bar formation was less vigorous in a static halo, while work
by a variety of different groups demonstrated that the growth and
evolution of bar depended on whether the halo was rotating with
or counter to the disc (Debattista & Sellwood 2000; Fujii et al.
2019; Collier, Shlosman & Heller 2019; Kataria & Shen 2022;
Chiba & Kataria 2024).

Though most studies of bar formation in simulations of isolated
disc galaxies have included only a stellar (i.e. collisionless) disc, the
presence of a gas disc may be important for regulating bar growth.
Lokas (2020) note that gas discs may weaken the bar instability.
Beane et al. (2023) argued that gas-rich galaxies have bars that do
not slow down, which they interpreted as resulting from a steady
supply of angular momentum from the gas to the bar. They relate this
mechanism to the metastability discussed by Sellwood & Debattista
(2006), in which any process which causes the bar pattern speed to
increase briefly (such as a sudden increase in the central density) gives
rise to resonances facing a rising phase space density, which inhibits
slowdown for a long time. Sellwood & Debattista (2006) emphasize
that this metastable state is quite sensitive to small perturbations.
However, in an isolated galaxy with no interactions, a bar can persist
in the metastable state for several gigayears.

In this work, we consider the evolution of bulgeless disc—halo
systems using initial discs that are more centrally concentrated
than pure exponential discs. Other examples of disc models with
dense cores can be found in Evans & Read (1998) and Jalali &
Hunter (2005). Here, we consider discs with surface density (SD)
profiles given by a Sérsic profile, T(R) o e~ ®/R)""  which is
a generalization of the exponential disc. For n > 1, Sérsic discs
have an excess mass at small radii as compared to exponential
discs.

The models are built using a modified version of the Galaxy Initial
ConditionS code (GALACTICS, Kuijken & Dubinski 1995; Widrow &
Dubinski 2005; Widrow, Pym & Dubinski 2008; Deg et al. 2019).
GALACTICS is designed to generate multicomponent equilibrium ICs
for N-body simulations of galaxies. Previous versions of the code
build stellar discs with exponential SD profiles, but our publicly
available version of the code' builds Sérsic stellar discs.

This paper is organized as follows. We motivate the use of Sérsic
discs in Section 2. In Section 3, we describe our ICs including
the implementation of the Sérsic disc, as well as details of the
simulations. Section 4 presents the evolution of both the bar and
the BP bulge in these initially bulgeless systems. We summarize our

Thttps://github.com/NateDeg/GalactICS_SersicDisk.git
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results in Section 5. Appendix A provides a more detailed description
of the GALACTICS modifications necessary to build Sérsic discs,
while Appendix B presents additional comparisons of our MW-like
simulation to observations of the Galaxy.

2 MOTIVATION FOR SERSIC DISCS

Though the exponential disc was originally proposed as an empirical
fit to observational data (Freeman 1970), there have been various
attempts to motivate it from first principles. For example, Fall &
Efstathiou (1980) and Mo, Mao & White (1998) showed that an
exponential disc can arise from a primordial rotating gas sphere
under the assumption that the specific angular momentum of the
gas is conserved as it collapses to a rotationally supported disc.
These and other arguments provide a strong plausibility argument
for approximately exponential discs but do not preclude departures
from a pure exponential profile. For example, Herpich, Tremaine &
Rix (2017) provide a theoretical argument for an SD profile that
deviates from a pure exponential in a manner that depends on the
shape of the circular speed curve. Their argument is that, from a
maximal entropy principle, the angular momentum should follow an
exponential profile. In such a maximal entropy disc (MED), radial
migration scrambles the angular momentum of individual stars while
conserving the total mass and angular momentum of the system,
leading the specific angular momentum distribution, N(j), to be

dN o e //V)g; D

where () is a constant. This translates to a surface brightness profile

ve(R) dlogve(R)\ _puryiiy
DRy o A (14 TR ) s @

where v, is the circular speed. For a flat rotation curve (RC),
% o e R/Ri/R where R; = (j)/v.. Thus, the model predicts an
exponential profile for R > R, but one that rises above a pure
exponential at smaller radii. On the other hand, for solid body rotation
(v = QR), one has ¥ o e ®*/R where R, = /{j)/S2.

The MED has a striking similarity to a Sérsic disc, which has an
SD profile of

S(R) = Tpe R/E" 3)

and a total mass of
1
M =2 /m2R3T(n + NI (n + 5) , 4)

where X is the central SD, Ry is the radial scale length, n is the
Sérsic index, and I' is the Gamma function. When n = 1, the Sérsic
disc reduces to an exponential disc. For n > 1, the Sérsic SD profile
rises above the exponential profile in its inner regions, similar to
MEDs with flat RCs. On the other hand, the Sérsic disc with n =
1/2 corresponds to a MED with solid body rotation. Note that the
interpretation of the radial scale length depends on n. For example,
the mass weighted average of 1/R (appropriate as an estimator of
the potential) is

(R =2"""771’T(n + 1/2)R;" Q)

which equals 1, 0.443, 0.167 Rd_] forn =1, 1.5, 2, respectively.

Sérsic disc profiles were suggested by Boker, Stanek & van der
Marel (2003) for late-type galaxies and Debattista et al. (2006)
presented examples of N-body simulations of barred disc galaxies
with initial Sérsic discs (up to n = 2.5) embedded in unresponsive
halo potentials.
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Both MEDs and Sérsic discs can have an enhanced central SD
that mimics the SD profile of a bulge plus exponential disc model. In
Fig. 1, we compare the SD profiles of the bulge + disc models
of D’Onghia & Aguerri (2020) and Tepper-Garcia et al. (2021)
with comparable SD profiles that assume either an exponential
disc, a Sérsic disc or an MED (see Section 3.2 for more details
on the D’Onghia & Aguerri 2020; Tepper-Garcia et al. 2021
models). Overall both the MED and Sérsic disc profiles follow the
bulge 4 disc models better than the pure exponential disc. They
show an excess density at large radii, and they do not rise as
quickly as the bulge 4 disc models in the innermost region. None
the less, both the MED and Sérsic disc profiles provide reasonable
fits for the D’Onghia & Aguerri (2020) and Tepper-Garcia et al.
(2021) SDs.

3 SIMULATION SUITE

‘We explore the evolution of MW models using bulgeless ICs through
a sequence of N-body simulations based around two recent, notable
high-resolution MW simulations: the D’Onghia & Aguerri (2020)
MW model and the Tepper-Garcia et al. (2021) MW model. The
ICs for our suite of simulations are built using a modification of the
GALACTICS code (Kuijken & Dubinski 1995; Widrow & Dubinski
2005; Widrow et al. 2008; Deg et al. 2019). The Deg et al. (2019)
version of the code can generate models with up to five components:
an exponential gas disc, two exponential stellar discs, a centrally
concentrated bulge, and a double-power-law dark matter halo. To
build our suite of ICs we further modify GALACTICS to generate
Sérsic stellar discs.

In the original version of GALACTICS (Kuijken & Dubinski 1995),
the DFs for the three components are elementary functions of the
energy, E, angular momentum momentum about the spin axis of
the disc, L,, and the energy of vertical oscillations, E,. The latter
is conserved to a good approximation for nearly circular orbits,
which is the case for the relatively cold discs considered in this
paper. That version of GALACTICS had a King model for the bulge
(King 1966), a lowered Evans model for the halo (Evans 1993;
Kuijken & Dubinski 1994), and a disc that is Maxwellian in both E,
and the energy of radial oscillations, £ — E., where E.(L,) is the
energy of a circular orbit with angular momentum L, (Kuijken &
Dubinski 1995). Widrow et al. (2008) extended the code to allow for
more general models of the bulge and halo. One begins with target
density profiles and calculates the DFs fiuge(E) and frao(E) via the
Eddington inversion formula. Finally, Deg et al. (2019) augmented
it to allow for a two-component (e.g. thin+thick) stellar disc and a
gas disc.

The first step in constructing an equilibrium dynamical model is
to calculate the self-consistent gravitational potential from the space
densities of the model components. Since E and E, are implicit
functions of the spatial coordinates, Poisson’s equation must be
solved iteratively. This is accomplished using an expansion in even
Legendre polynomials. A key innovation from Kuijken & Dubinski
(1995) was to use an analytic density—potential pair to capture the
short-wavelength component of the disc potential. Very accurate
density—potential pairs can be calculated with Legendre polynomials
up to order 10.

3.1 Stellar discs

In previous implementations of GALACTICS, the mid-plane density
and radial velocity dispersion were both assumed to be exponential
functions of galactocentric cylindrical radius R. The exponential disc

MNRAS 542, 464-485 (2025)

is motivated by the seminal work of Freeman (1970), who found that
the surface brightness profiles of disc galaxies outside the bulge were
well fitted by an exponential profile. In the MW, Bovy & Rix (2013)
found that the SD profile at 5 < R/ kpc < 10 was approximately
exponential. In addition, the vertical velocity dispersion was tuned
to give a vertical scale height that was approximately constant in R.
These choices were made to match the qualitative features of edge-on
galaxies (Bottema 1993) and yielded models where the SD profile
was approximately exponential.

In this work, we consider models with Sérsic discs, which are
straightforward to implement in GALACTICS. A full description of
this implementation is presented in Appendix A, and the new version
of GALACTICS is publicly available through GitHub (see footnote
1). Armed with this new version of GALACTICS we can generate
bulgeless models.

3.2 Model details

Our starting point for the suite of MW models are the D’Onghia &
Aguerri (2020) and Tepper-Garcia et al. (2021) models. Rather than
include a classical bulge, we fit the parameters of a Sérsic disc
to the combined stellar SD of the bulge + disc systems used
in those models. The D’Onghia & Aguerri (2020) model used
the AGAMA software package (Vasiliev 2019) to produce a 92.4
million particle simulation. Their ICs consisted of a Hernquist (1990)
bulge, an exponential disc, and a Hernquist halo. The bulge had
Mp =8 x 10° Mg, and ag = 120 pc; the disc had M; = 4.8 x 10'°
Mg and R; = 2.67 kpc; and the halo had Mpy = 10'2 Mg and
a = 30 kpc. The ICs of the Tepper-Garcia et al. (2021) model were
produced using AGAMA. Their Hernquist bulge had Mz = 1.3 x 10'°
Mg and ap = 0.6 kpc, their NFW (Navarro, Frenk & White 1997)
dark matter halo had R, = 19 kpc and pg = 9 x 10° Mg kpc~> and
their exponential disc had My = 4.3 x 10'° M and R; = 2.5 kpc.

In order to build versions of these models, it is necessary to convert
the D’Onghia & Aguerri (2020) and Tepper-Garcia et al. (2021)
parametrizations into equivalent GALACTICS parametrizations. The
version of GALACTICS used here consists of a double-power-law
dark matter halo with a density given by

l—a 2
o, 1

A R? (r/Rp)*(1 +r/Ry)f~2

where 0, and R, are the scale velocity dispersion and radius respec-
tively, « is the inner slope, B is the outer slope, and C(Ry;, Sg.p.) is
a truncation function with R, , and 8¢ 5, being the truncation radius
and truncation width respectively. The Sérsic disc has a density given
by

pn(r) = CRpt 8r,ht) 5 ©)

My -~ 1/n
Ro=_ M wmro
PR3 = R Tan”
xsech? (i> C(Rar Sras) s (7)
Zd

where M, is the disc mass, Ry is the disc scale length, z, is the
scale height, n is the Sérsic index, and C(Ry,, Sg.q4,,) 1S a truncation
function for the disc. The GALACTICS gas disc SD is given by

M
To(R) = 52 MR C(Ry . Opgr) - ®)
8 277 Rg 8 8
where M, is the gas mass, R, is the gas scale radius, and
C(Rg,, R q,1) is a truncation function for the gas disc. The gas disc
is assumed to be in hydrostatic equilibrium at temperature 7,. The
scale height is then a function of R and is set by the condition that the
gas pressure balances the gravitational force toward the mid-plane.
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Figure 1. SD profiles for bulge+disc, Sérsic, and MED models. The SD X is shown in the top panels on a semilog plot. The exponential disc (red dotted curves)
and bulge (red dashed curves) are shown for the D’Onghia & Aguerri (2020, left) and Tepper-Garcia et al. (2021, right) models. The total surface brightness
profiles for these bulge+disc models is shown as solid black curves. The Sérsic models used in this paper are shown as dot—dashed (blue) curves. In the bottom
panel, we show the same surface brightness profiles normalized by the exponential disc on a linear plot. An MED that best approximates the bulge+disc model
is shown as a solid green curve. The models with gas include an additional exponential disc with properties given in Table 1.

We start with two fiducial gasless models, one approximating the
D’Onghia & Aguerri (2020) model, which we refer to as model D00,
and the other approximating the Tepper-Garcia et al. (2021) model,
which we refer to as model TGOO. The GALACTICS parameters for
these models are listed in Table 1. We also consider a sequence of
models based on DOO with the same halo and stellar disc parameters
that also include gas discs with masses equal to 7 per cent, 15 per cent,
20 per cent, and 30 per cent of the stellar disc mass (termed D07, D15,
D20, and D30, respectively). The gas discs in these models have an
exponential scale length of R, = 6.5 kpc and a temperature of 10* K.
Since this scale length is about 2.4 times larger than the scale length
of the stellar disc, the gas disc increases the RC by only < 5 per cent
for D30, the case with the most massive disc. Finally, we consider
three models (TGO7, TG07v2, and TG07v3) with an additional gas
disc of 7 percent the stellar disc’s mass. The latter two differ from
TGO7 in the way the gas disc is initialized and the way feedback is
implemented as discussed below. While the stellar and dark matter
parameters are broadly the same as the DOO and TGOO models, the
full parameters of these gaseous models are also listed in Table 1.
The stellar disc velocity dispersions are set such that the Toomre Q
parameter is greater than 1 at all radii.

3.3 Simulation details

We run the collisionless simulations (D00 and TG00) with PKDGRAV2
(Stadel 2001), a treecode for N-body simulations. All the models are
initialized with 5 x 10° dark matter particles and 4.8 x 10° stellar
particles. We use a particle softening? of € = 50 pc for the stars,
and € = 100 pc for dark matter particles. We select a base time-step
At = 5 Myr, with time-steps of individual particles refined such that
each satisfies the condition §t = At/2" < n./€/a,, where a, is the

2We report the softening spline mid-point as the softening length.

acceleration at the particle’s current position. This results in seven
rungs (i.e. n = 6, corresponding to a minimum &t = 78, 125 yr) in
both DOO and TG00. We set n = 0.2 and the opening angle of the
treecode gravity calculation 6 = 0.7. We evolve these models for
10 Gyr.

Since PKDGRAV?2 is a pure N-body code, and cannot model gas,
we run the simulations with gas using the efficient N-body+SPH
code CHANGA (Jetley et al. 2008, 2010; Menon et al. 2015), which
is a CHARM—+ + extension of GASOLINE (Wadsley, Stadel & Quinn
2004; Wadsley, Keller & Quinn 2017).> The gas disc simulations
have 3 x 10° gas particles, regardless of the gas mass fraction. As
with the collisionless simulations, we employ a tree opening angle
of 6 = 0.7 with a base time-step of Az =5 Myr. Time-steps of
individual particles are then refined in the same way as for the
collisionless simulations with two differences: we set n = 0.175,
and the time-steps of gas particles must also satisfy the additional
condition (Stgas < ncouranth/[(l + O‘)C + lg,ufmax]’ where Ncourant = 04’
h is the SPH smoothing length set over the nearest 32 particles,
a = 1 is the shear coefficient, 8 = 2 is the viscosity coefficient, c is
the sound speed, and pn.x is the maximum viscous force between
gas particles (Wadsley et al. 2004). The softening of gas particles,
which is inherited by star particles formed from them, is € = 50 pc.
With these time-stepping recipes, 7-9 rungs (maximum n = 6 — §,
corresponding to §t = 78, 125 — 19, 531 yr) are required to move
all the particles.

In the D series of simulations star formation requires a gas particle
to have cooled below 15000 K and exceeded a density of 0.1
amucm™>. Gas particles meeting these criteria form stars with a
probability of 0.05 per dynamical time (Stinson et al. 2009), i.e. the
star formation efficiency is set to 5 per cent. Chemical and thermal
mixing use the prescriptions of Shen, Wadsley & Stinson (2010a).

3GASOLINE is itself a hydrodynamics extension of PKDGRAV.

MNRAS 542, 464485 (2025)
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Table 1. Parameters for all the models in this paper. All three versions of the TG07 model correspond to the same physical system.

Parameter Unit D00 D30 D20 D15 D07 TG00 TGO7
Halo
o kms~! 550 550 550 550 550 405 405
Ry, kpc 30 30 30 30 30 19 19
o 1 1 1 1 1 1 1
B 3 3 3 3 3 3 3
Sérsic disc
M, 1010 Mg 5.2 5.2 5.2 5.2 5.2 5.5 5.5
Ry kpc 0.91 0.91 0.91 0.91 0.91 0.43 0.43
n 1.5 1.5 1.5 1.5 1.5 1.75 1.75
Zd kpc 0.25 0.25 0.25 0.25 0.25 0.25 0.25
o1 kms~! 80 90 80 80 80 80 80
Ro1 kpc 2.5 2.3 2.8 2.5 2.5 2.5 2.5
() km s~! 28 0.0 30 30 28 70 70
Roo kpc 1.8 2.0 1.8 1.8 1.8 1.8 1.8
Gas disc
M, 10° Mg - 17.2 10.2 7.8 3.65 - 3.85
R, kpc - 6.5 6.5 6.5 6.5 - 6.5
T, K - 10* 104 10* 10* - 10*
In models D07 and D15, the supernova feedback couples 0.8 x 10°! m = 2 Fourier mode is
erg per supernova to the gas via the supf:rbubble prescription of R — L (>, mysin(26,) 0
Keller et al. (2014). In model D30, we dial down the strength of ¢ (R) = Etan 721( mecos260) ) (10)

the supernova feedback to 0.4 x 103! erg per supernova. In all these
models stars form with a mass 1.1 x 10* My, and gas particles are
removed and their remaining mass distributed to the neighbouring
gas particles when their mass drops below 1.1 x 10* Mg,

The TG series of models with gas all have an additional 7 per cent
of the stellar disc mass in gas. They are run with the same base time-
step, time-step refinement parameters, star formation efficiency, star
formation density threshold, and supernova feedback strength (0.8 x
10°! erg per supernova). Stars form with an initial mass 1.1 x 10* Mg
in models TGO7 and TG07v2, while in TG07v3 we reduce this to
42 x 10° Mg.

4 EVOLUTION OF SERSIC DISC MODELS

4.1 The D series of simulations

We start by considering the D series of models, in which we vary
the gas fraction from O per cent to 30 per cent. In Fig. 2, we compare
face-on and cross-sectional views of the projected stellar density for
the different D-series models (the cross-sections highlight the BP-
bulge shape). The upper left panel shows the initial disc, while the
other panels show the discs at # = 10 Gyr. As expected, the longest
bar, which reaches 8 kpc, is seen in the gasless (D00) simulation,
highlighting the problem of runaway secular bar growth. It also has
the most prominent BP bulge. The strength of the bar and of the
BP-bulge visibly decrease with increasing gas fraction. Even with a
modest 7 per cent gas disc (D07), the final bar and BP-bulge size is
decreased by a factor ~ 2 over model D0O.

The bar strength can be quantified by the amplitude of the m = 2
Fourier moment:

Zk mkeZZ(')k
2k M

where the sum is over a cylindrical ring of radius R, and m; and 6,
are the mass and angle of the kth particle. The phase angle of the

a(R) = , (©))
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where the summation is again over all particles in some cylindrical
ring. Fig. 3 shows the profile of a,(R) for the stellar discs of D-
sequence models at ¢+ = 10 Gyr, as well as the angle, ¢, of the mode
relative to the angle in the innermost radial bin. This plot shows that
the bar strength and bar length decreases with increasing gas fraction.
It is worth noting that the jumps in the outer radii are partially due to
the cyclical nature of ¢, over a range of 180°. Additionally, once the
a, moment is low, the shape is approximately circular, leading to ¢,
becoming essentially meaningless.

4.1.1 Bar evolution

Fourier profiles such as those in Fig. 3 can be used to quantify the
bar’s total strength and length, and thus study its evolution. For this
work, we set the bar strength, A,, to be the maximum of a,(R), using
40 radial bins with widths of 0.5 kpc. There are a variety of different
methods for calculating the bar length (for examples, see Aguerri
et al. 2000; Athanassoula & Misiriotis 2002; Erwin 2005; Michel-
Dansac & Wozniak 2006; Anderson et al. 2022). Here, we follow a
similar (but not exactly the same) approach as Anderson et al. (2022),
and calculate both the radius where a,(R) drops below 0.1 (the grey
dashed line in the upper panel of Fig. 3) and where ¢»(R) changes by
more than 10° (the grey shaded region in the bottom row of Fig. 3).
The bar length is set as the average of these two radii, while the
uncertainty is based on the sum of half the difference between the
two radii and half the bin size added in quadrature.

Fig. 4 shows the global bar strength, length, and other bar
properties as a function of time for the D sequence of models.
Table 2 lists the bar strength, inner thickness, length, pattern speed,
and slow down rate along with the MW values (for those with
measured values) at the best matching snapshots. In all of the D-
sequence simulations, A, rises to an initial value between 0.3 and
0.5 within the first 500 Myr, as the bar instability sets in almost
immediately and saturates after a few dynamical times. The trend of
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Figure 2. A comparison of the inner stellar disc for the D-sequence models. The upper left panel pair shows the SD and cross-section of the stellar disc for
each D model at T = 0 Gyr, while the other panels show the stellar disc of the D series at t = 10 Gyr. In all 10 Gyr panels, the stellar discs are rotated to place
the bar along the x-axis. For the (x, z)-plane views, we have imposed a cut |y| < 1 kpc to emphasize the BP-shaped nature of the bulge.

bar strength decreasing with increased gas fraction in Fig. 4 matches
the instantaneous a,(R) profiles seen in Fig. 3.

The second row of Fig. 4 shows the root mean square thickness of
the inner (R < 2 kpc) disc, (z?)!'/2. This thickness steadily increases
over the course of the simulation reaching a final thickness of about
1.2kpc or a factor of 4 — 5 times the initial thickness in the absence
of gas, and by a factor of 2 — 3 when gas is present. None of the
simulations show the sharp increase in thickness that is characteristic
of a buckling event. We also computed the buckling amplitude Apycx
(Debattista et al. 2006) and did not find any evidence of major
buckling events. We conclude that the bars and BP bulges formed
in the D sequence are formed via resonant trapping rather than a
buckling event, consistent with the results of Sellwood & Gerhard
(2020), who find buckling is suppressed when the centre of a galaxy
is dense.

In the third row of Fig. 4, we plot the bar radius, Ry,,. While all
bars start out with the same size (Rp,r ~ 3 kpc) as expected, the bar
grows longest in the DO0 model, reaching Ry, > 8 kpcat?z = 10 Gyr.
The next longest final bar is found in the DO7 model, which reaches

Ryar =~ 6 kpe. The simulations with larger gas fractions end with bars
having Ry, >~ 4 — 5kpc, consistent with the observational results of
Wegg et al. (2015) who measured, for the MW, Ry, = 4.6 £ 0.3 kpc
from red clump giant stars.

We show the pattern speed, 2, = d¢,/dt, in the fourth row of
Fig. 4, along with the MW measurement of Portail et al. (2017).
The pattern speed is obtained using the single snapshot method
of Dehnen, Semczuk & Schonrich (2023). After calculating the
pattern speed, we apply the LOWESS smoothing algorithm from SCIPY
(Virtanen et al. 2020) to the calculated values to smooth out the
numerical fluctuations. Unsurprisingly, the bar in model DOO has
the slowest final pattern speed. The shorter bars in the simulations
with gaseous discs have higher pattern speeds. The bar in each
simulation slows down as they grow in strength, and length. The
pattern speeds in all the simulations with gas discs are consistent
throughout much of their evolution with the MW measurement of
Q, =39.0£3.5km s~! kpc™! of Portail et al. (2017). Except for
model D30, the bars in the models slow down uniformly. Model D30
experiences a period of acceleration during ¢ >~ 6 — 8 Gyr, during

MNRAS 542, 464-485 (2025)
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Figure 3. A comparison of the second Fourier moment amplitude (top panel) and phase (bottom panel) for the D sequence of models at # = 10 Gyr. The bar
angle has been set relative to the value of ¢, in the innermost radial bin. The dashed line in the upper panel shows the a; < 0.1 limit, while the grey shaded
region in the bottom panel shows the size of the [§¢2| < 10° which are both used to determine the bar length in Section 4.1.1. In this plot, the bin size is 0.5 kpc.

which the bar weakens slightly, before then slowing down again,
and reaching values of €2, very similar to that of the other models,
despite having the weakest bar.

By modelling the Hercules Stream as resulting from stars trapped
at the bar’s corotation resonance, Chiba et al. (2021) presented
evidence that the pattern speed of the MW’s bar is declining at
Q,=—-45+ 1.4km s~ kpc™! Gyr~!. We present the Chiba et al.
(2021) measurement and 2 p for the models in the fifth row of Fig. 4.
We calculate the slowdown rate of our simulations by taking the
derivative of the smoothed pattern speed. Since the pattern speed
is not perfectly smooth, the calculated €2, shows a great deal of
variation. Unlike the other bar properties presented in Fig. 4, €2, is
not directly correlated with the gas fraction. Compared to the Chiba
etal. (2021) estimate, the slowdown rates of the D sequence of models
are lower (i.e. closer to zero) for the majority of their evolution. It
is worth noting that, by definition, no simulation can satisfy both
the Portail et al. (2017) pattern speed measurement and the Chiba
et al. (2021) slow down rate of the MW for longer than ~ 1 Gyr.
In the case of the gaseous D sequence of models, the pattern speed
and slowdown rate broadly agree with both Portail et al. (2017) and
Chiba et al. (2021) around ¢ >~ 4 — 5 Gyr, but at those times, the bar
length’s are smaller than the MW’s bar.

4.1.2 BP bulges

In the MW, the presence of a BP bulge means that, along certain lines
of sight, two peaks in the number counts of stars as a function of
distance are evident (McWilliam & Zoccali 2010; Nataf et al. 2010;
Saito et al. 2011; Wegg & Gerhard 2013; Gonzalez et al. 2015).

MNRAS 542, 464485 (2025)

In Fig. 5, we present mock observations of the number density of
simulation particles along varying lines of sight together with the
observations of Gonzalez et al. (2015). The observations include
both red clump and red giant branch bump (RGBB) stars. To generate
the model curves, all particles within a projected 1° of the line of
sight are randomly assigned the absolute magnitude of a red clump
or an RGBB star. In the upper three rows, the red clump absolute
magnitudes are drawn from a Gaussian with (M) = —1.55 and ogc =
0.17, while the RGBB magnitudes are drawn from a Gaussian with
(M) = —0.84 and a orggg = 0.17 (Nataf et al. 2013; Gonzalez et al.
2015, 2018). In the bottom row, all particles are given the absolute
magnitude of either a red clump or RGBB star. In all cases, the
ratio of red clump to RGBB stars is set to 20 per cent (Wegg &
Gerhard 2013). Once a particle is assigned an absolute magnitude,
its apparent magnitude is calculated using the distance modulus, and
then binned to create the histograms seen in Fig. 5. As such, the
bottom row shows the specific snapshot’s true apparent magnitude
(or distance) distribution along the / = —8.5° lines of sight rather
than the convolved distribution. The model histograms in the upper
three rows are normalized by the singular peak of all the models in
the / = 0° panel of each row in order to highlight the differences
between the models. The fourth row (i.e the unconvolved magnitude
distributions) are instead normalized by the same factor as the third
row so that the effect of the convolution by the distribution of stellar
magnitudes can be seen clearly. The Gonzalez et al. (2015) data are
normalized separately by its own peak in the / = 0° panels (matching
the normalization of fig. 2 of Gonzalez et al. 2015).

When comparing the bulge lines of sight to the Gonzalez et al.
(2015) data, it is important to compare the shapes rather than
the height of the curves due to our use of a single normalization
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Figure 4. The evolution of the bars in the ‘D’ series of models. From top to bottom, the panels show the maximum of A,(R) as the bar strength, the rms of
the disc vertical height within the inner 2 kpc, the bar length, the bar pattern speed, and the bar slowdown rate. The dark grey shaded regions in the bar length,
pattern speed, and slow down rate panels are measurements from Wegg, Gerhard & Portail (2015), Portail et al. (2017), and Chiba et al. (2021) respectively.
The other coloured shaded regions in the bar length panel are the uncertainties in the bar length.

for all models. This normalization allows a comparison between
the different models with regards to how they evolve. But for
direct comparisons to the Gonzalez et al. (2015) data, individual
normalizations are preferred (see Appendix D for an example). Thus,
for this discussion, we focus on the shape of the D-family of models
and the Gonzalez et al. (2015) data. In the top row, the most noticeable
feature is the secondary peak in the brightness distributions at
K ~13.5 in all panels. This feature is due to the RGBB stars and
not due to the BP-bulge structure. Comparing the models to the
Gonzalez et al. (2015) data, it is clear that the observations have a
broader distribution as well as a larger secondary peak. The extra
broadening is likely due to remaining differential reddening in the
data (Gonzalez et al. 2018). The difference in the secondary peak
sizes may be due to the ratio of RC to RGBB stars along these
lines of sight. The key result of the b = —3° panels is that the

primary peaks are located at the same magnitudes in the models and
the data.

The b = —5.5° panels are more interesting. The model profiles
are broadly flat compared to the data, which shows asymmetrical
peaks at [ = 2° and —2°. However, all the models that include gas
have similar width as the Gonzalez et al. (2015) data, while the
D00 model is broader. This is due to the extremely large BP bulge
present in the DOO model, while the rest have much more MW-like
sizes. This result is made more clear in the two b = —8.5° rows.
The unconvolved profiles (bottom row) all show strong bimodalities,
but, when convolved with the appropriate stellar distribution widths,
much of this bimodality disappears (third row). None the less, the
models that include a gas disc do show differences between the near
side (K ~ 12.6) and far side (K ~ 13.4) peaks that are similar to
the Gonzalez et al. (2015) data and are caused by their BP-bulge

MNRAS 542, 464-485 (2025)
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Table 2. The measured bar properties of the MW, the D simulations, and the TG simulations. For the simulations, the specific snapshot is
selected based on the quality of the combined comparison to the three MW measurements.

Snapshot Ay S YARSE Ryar Q) Qp
(kpc) (kpc) (kms~! kpc_l) (kms™! kpc_l Gyr‘l)

MW 46403 39.0+3.5 45+ 14
D00 - 3 Gyr 0.45 0.38 475+ 1.0 35. —-7.6
D07 -5 Gyr 0.42 0.39 454+0.8 37. -3.1
D15 -6 Gyr 0.37 0.39 4.£0.8 39. —1.4
D20 -6 Gyr 0.33 0.39 4.£0.8 42. —-1.6
D30 -5 Gyr 0.25 0.39 35+£04 36. -1.3
TG00 - 2.5 Gyr 0.45 0.38 5.£0.8 33. —6.3
TGO7 -3 Gyr 0.40 0.37 4.25+0.5 44. -8.
TGO7v2 - 3 Gyr 0.37 0.37 425+£0.5 45. —6.7
TGO7v3 - 3 Gyr 0.37 0.37 425+1.0 42. -5.7

structure. The distributions have similar widths, the peaks are in
the correct locations, and, for the / = 2° panel, there are more
nearby stars than distant stars, which is flipped for the [ = —2°
panel. On the other hand, the DOO model is much broader than
the observed data, with peaks at the incorrect locations. Ultimately,
the DO7 model has the most similar shape to the Gonzalez et al.
(2015) data across all panels (see further discussion in Appendix D),
but the other models gas disc models are also reasonable. None
the less, given the disagreements with the bar parameters, we
conclude that none of the D-series models are a close match to
the MW.

4.2 A more realistic MW bar model

The models in the D series show that reasonably sized bars can form
in a Sérsic disc, and that the presence of gas can reduce the secular
growth rate of the bar for a final model that is not too different from
the MW. In order to produce an improved model of the MW, we turn
to the models based on the Tepper-Garcia et al. (2021) model. The
Tepper-Garcia et al. (2021) model was designed to match multiple
observables of the MW, including the Galactic RC and SD profiles.
Although the Tepper-Garcia et al. (2021) model evolves away from
these initial constraints, it provides a better-tuned starting point. In
addition, it is more disc dominated in the inner region and therefore
more susceptible to the bar instability, while potentially lowering the
secondary secular growth.

Based on the results of the D-sequence models, we only consider
a gasless model, TGOO, and three instances with a 7 per cent gas disc,
(TGO7, TGO7v2, and TGO7v3). TGO7v2 is designed to examine
the effect that bar stochasticity (Sellwood & Debattista 2009),
while TG07v3 is designed to investigate the effects of different star
formation subgrid parameters (see Section 3).

4.2.1 Bar evolution

Fig. 6 shows the time evolution of bar properties for the TG sequence
of models using the same analysis methods as in Fig. 4. Like the D
sequence, all TG simulations rapidly develop a bar which initially
extends to Ryar =~ 4 kpc. In model TO0O, the bar becomes far stronger
and more extended than in the MW, reaching Rp,, ~ 10 kpc, and
a pattern speed of ~ 20 km s~! kpc™!, which is comparable to the
evolution seen in model DOO.

The models with gas discs evolve differently than the equivalent
D07 model, as all three of the TGO7 sequence reach a steady
configuration by ~ 3.5 —4 Gyr, with little evolution in Ry, Or

MNRAS 542, 464-485 (2025)

Q,, thereafter. There is a slight weakening of the bar strength,
A,, over this period. The fact that all three 7 per cent-gas models
develop bars with constant lengths and pattern speeds despite the
different random initializations and star formation recipes suggests
that this stability is numerically robust. It is likely that these
are in a metastable configuration (see Appendix C for a more
detailed discussion). TGO7 briefly attains a positive torque, i.e.
2, increases, over a period of ~ 1 Gyr, which may be associated
with the fact that this model briefly has a stronger bar than any
of the other 7 percent gas disc models. The thickness of the TG
models evolves very slowly, with no evidence of buckling in any of
them.

4.2.2 BP bulge

Given the similarity of the three 7 per cent gas disc TG models, we
consider the BP bulge only in the TGO7 model. The same analysis
for models TG07v2 and TGO7v3 is presented in Appendix D.

Fig. 7 shows the SD map and cross-section of model TGO7 at
3, 5, and 10 Gyr. Some weak evolution is evident, with the bar
becoming slightly rounder over time, which is consistent with Fig. 6,
which shows that the bar weakens somewhat. Additionally, the BP
bulge becomes slightly thicker with a less peanut/more boxy shape
developing. This can be seen more clearly in Fig. 8, which shows
the mock red clump bimodality at r = 3, 5, and 10 Gyr compared
with the observational data from Gonzalez et al. (2015). Once
again, it is important to note that, for Fig. 8, the normalization to
a single snapshot peak rather than individual normalizations enables
an examination of the time evolution of the BP shape. As with Fig. 5,
in Fig. 8, we compare the shape of the curves in each panel to the
Gonzalez et al. (2015) data rather than their heights (see Appendix D
for further discussion). At 3 Gyr, the bar is still evolving, but has
nearly reached the MW’s bar length and pattern speed. At this point,
the differences between the low- and high-magnitude regions are
the largest, and the overall distribution across all lines of sight is
most similar to the Gonzalez et al. (2015) data. As the bar and
BP bulge broaden laterally, the line-of-sight distributions become
smoother and the difference between the near and far sides of the
stellar distributions decrease. Thus the TG07 model at t = 3 Gyr is
the closest to matching the MW.

While the TGO7 model at t = 3 Gyr is the closest to matching the
MW, the central dips in the / = —8.5° panels are missing, and there
are slight differences in the location of the peaks and ratio of the
approaching/receding side number counts. We attribute these to the
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Figure 5. Mock observations of the simulations along different lines of sight towards the BP bulge for the D sequence of models at t = 10 Gyr. The upper
three rows have all been convolved with the observed widths of both red clump and RGBB stellar magnitudes, while the bottom row is unconvolved. In other
words, the bottom row shows the underlying magnitude distribution of stars along the b = —8.5° lines of sight, while the third row shows that same distribution
convolved by the observational distribution of red clump and red giant bump branch stars. The model curves in the top three rows are normalized to the peak
value of all model curves in the / = 0° panels in each row. The bottom row model curves are normalized using the exact same factor as the third row in order
to highlight the effect of the convolution on the underlying particle distribution. The Gonzalez et al. (2015) data have been normalized separately to the peak in
the [ = 0° panels of each row. The galactocentric coordinates of the lines of sight are listed in the upper right corners of each panel.
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Figure 6. The bar evolution of the TG sequence of models as function of time. From top to bottom, the panels show the maximum of a>(R) as the bar strength,
the rms of the disc vertical height within the inner 2 kpc, the bar length, the bar pattern speed, and the bar slowdown rate. The grey shaded regions in the bar
length, pattern speed, and slowdown rate panels are the same as in Fig. 4, while the other coloured shaded regions in the bar length panel are the uncertainties

in the bar length.

TGO7 model having a weaker BP signature than the actual Galaxy.
To test this, we explored adjustments to the ratio of red clump/RGBB
stars to mimic possible uncertainties in this ratio. Such adjustments
only change the height and slope of the inflection point seen in the
| = —3° panels. We also explored a range of intrinsic widths to the
stellar magnitudes of the red clump stars. While a smaller width can
lead to the intrinsic bimodality seen in the bottom row of Fig. 8 being
observed in the third row, it also shrinks the full distribution width
in the top row as well as adjusting the ratio of approaching/receding
side number counts. Given that the intrinsic width is based on the
observations of Nataf et al. (2013) and Gonzalez et al. (2015) and
that the fits in Fig. 8 are superior to any tested alternatives, we are
left to conclude that the remaining differences between the Gonzalez
et al. (2015) observations and the TG07 model are truly due to

MNRAS 542, 464-485 (2025)

differences in the BP structure. This result highlights the fact that,
while this model does reasonably well at producing the main features
of the bulge, more work will be required for a detailed match to
the MW.

One method of quantifying the BP shape of a bulge is with the
fourth-order Gauss—Hermite moment, /14 (see Debattista et al. 2005)
of the vertical velocity distribution along the bar’s major axis. The
presence of a BP bulge is revealed by the presence of a double
minimum in the 44. Fig. 9 shows the time evolution of the 74 moment
across the TGO7 family of models. The similarities of the models
indicates that the BP only grows modestly between 3 and 10 Gyr,
as does the bar itself. The depth of the /4 minima does not change
very much. We conclude that it must be the broadening of the bar
that causes the change in the apparent distribution of red clump
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Figure 7. A comparison of the SD maps and 2 kpc-wide cross-sections of the stellar disc of the TG07 model at different times. In all panels, the stellar discs
are rotated to place the bar along the x-axis. For the (x, z)-plane views, we have imposed a cut |y| < 1 kpc to emphasize the X-shaped nature of the bulge.

magnitudes rather than any significant weakening of the BP itself.
This result complements the work of McClure et al. (2025). They
examined a suite of pure N-body models with differing classical
bulge fractions and found that all their models formed a BP bulge. In
their work, the BP structures form via resonances with the bar. When
orbits cross the bar’s horizontal and vertical resonances, especially
at resonance overlaps, the BP bulge grows. While we have not
performed such detailed orbit analysis here (but see also Beraldo
e Silva et al. 2023), it is suggestive that a similar mechanism is
operating in the TGO7 models.

Based on the TGO7 models’ consistency with the bar length,
pattern speed, as well as its similarity to the Gonzalez et al. (2015)
line-of-sight distributions, we argue that it has produced a plausible
MW bar and BP bulge. In Appendix B, we further compare the
TGO7 simulation to other MW observational constraints. The original
Tepper-Garcia et al. (2021) model, on which the ICs of model TG07
are based, was tuned to match the observed RC and SD profile of
the MW. As the TGO7 model evolves, it ends up moving away from
these conditions. However, model TG07 remains equally consistent
(or inconsistent) with MW observations as the original Tepper-Garcia
et al. (2021) model.

It is worth discussing briefly the dynamical evolution of tailored
simulations and comparisons to the MW (or other systems). While
the TGO7 model is fairly stable, some aspects of it do continue to
evolve with time. If the MW bar’s pattern speed is indeed declining,
as suggested by Chiba et al. (2021), then a simulation can only match
the MW’s bar properties for a period of ~ 1 Gyr. Moreover, changes
in the mass distribution will be reflected in the RC, SD profile, and
other observations. Thus, a ‘successful’ simulation may only agree
with the full set of available MW measurements for a relatively short
period of time. To move forwards in this regime, it will be necessary
to build a suite of simulations that are designed to evolve towards
MW observations (rather than starting with ICs that match MW
observations). A successful model in such a suite will only match
these observations for a brief period of time before evolving away.
This prospect of ‘snapshot’ matching then opens up an interesting
regime where it would be possible to date specific structures seen
by the time it takes for the model to evolve to their current observed

configuration. Such an effort is beyond the scope of this work, where
we are focused on building a plausible model of the MW rather
than precisely matching it. In that sense, the TG07 model is indeed
plausible, meaning that it is possible to build a realistic MW model
that forms a BP bulge that is similar to observations from an initially
bulgeless disc.

5 CONCLUSIONS

In this work, we generated a plausible model for the MW by evolving
a system that initially comprised a Sérsic disc, a gas disc, and a dark
halo. Though all of the simulated systems formed bars and BP bulges,
TGO7 was best able to reproduce observational data for the length,
strength, pattern speed, and line-of-sight density. All simulations
produce a bar and BP bulge. However, the bars and BPs in the
gasless models grow far too strong for the MW, due to the very
strong secular growth of the bar. The inclusion of even a modest gas
disc, of only 7 per cent of the stellar mass, slows down the secular
evolution of the bar, consistent with both the findings of Beane
et al. (2023) and Athanassoula, Machado & Rodionov (2013). In
particular, Athanassoula et al. (2013) found that the gas has a dual
effect of both preventing bar formation, and, when bars form, causing
it to evolve more slowly.

The TGO7 models evolve slowly, with a metastable bar and BP
structures. The stability of the bars is due to the presence of the gas
as differences in the random seeds or feedback recipes all produce
stable models. The TGO7 bars all match the observed properties of
the MW bar, with the exception of the slow down rate found by
Chiba et al. (2021), though this was based on the assumption that the
pattern speed was a linear function of time, which is not the case in
the TGO7 models.

In addition to matching the majority of the bar properties, the BP-
bulge structures of the TGO7 simulations broadly and qualitatively
reproduce the overall distribution of red clump and RGBB stars
seen along various lines of sight in the MW (Gonzalez et al. 2015).
Moreover, other observations, such as the RC and SD profile, are also
consistent with MW observations. Thus, it is indeed possible to build
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Figure 8. Mock observations of red clump star and RGBB magnitudes along different lines of sight towards the BP bulge for the TG sequence of models
at t = 10 Gyr. As with Fig. 5, the model curves in the upper three rows are convolved with the red clump and RGBB magnitudes and normalized by the
peak of all model curves in the / = 0° panels in each row. The bottom row shows the unconvolved magnitude distribution of the particles and is normalized
by the same factor as the third row in order to highlight the effect of the convolution on the particle distribution. The Gonzalez et al. (2015) data have been
normalized separately to the peak in the / = 0° panels of each row. The galactocentric coordinates of the lines of sight are listed in the upper right corners of each
panel.
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Figure 9. The evolution of the /4 profiles along the bar’s major axis in the
three TGO7 models. The double minima are a signature of the BP bulge. The
vertical dashed lines indicate the radius of the bar at the given time, while the
horizontal dashed line indicates 74 = 0.

a plausible MW bar and BP bulge using bulgeless ICs, provided that
a gas disc is present.

While there is significant observational evidence that the MW
has an in-situ bulge formed through the secular evolution of the disc
(Shen et al. 2010b; Debattista et al. 2017; Kormendy & Bender 2019),
it remains unclear whether such bulges are common in Lambda-cold
dark matter. Governato et al. (2010) used cosmological simulations to
show that it is possible to generate nearly exponential discs in dwarf
galaxies which fail to produce a bulge via supernova feedback acting
on an inhomogeneous interstellar medium. In more massive galaxies,
such as the MW, therefore it is conceivable that similar processes can
produce similarly bulgeless galaxies with Sérsic profiles with denser
centres. Further study of modern cosmological simulations will be
required to confirm that MW-mass galaxies can indeed form without
a classical bulge.

Ultimately, our ability to generate a plausible MW using bulgeless
ICs opens new avenues of exploration. We are now able to explore
BP-bulge formation over a large parameter space and can perform
a simulation campaign to find the best possible models of the
Galaxy. Similar experiments can be performed for other galaxies with
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observed BP bulges. High-resolution extensions of these simulations
can be used to study the phase-space structure and compare it to those
observed with Gaia. There are many other experiments that can be
run to explore bulgeless ICs, and our new version of GALACTICS
provides the key tool needed.
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APPENDIX A: GALACTICS WITH A SERSIC
DISC

The GALACTICS code is a robust method of generating ICs for
tailored simulations. While initially designed to generate colli-
sionless systems (Kuijken & Dubinski 1995; Widrow & Dubin-
ski 2005; Widrow et al. 2008), Deg et al. (2019) modified the
code to include an exponential gas disc. Modifying this ver-
sion of the code to incorporate Sérsic stellar discs is relatively
straightforward due to the nature of the disc density—potential
pair used in the code. The disc density and potential are written
as

pa(R, 2) = pun(R, 2) + pr(R, 2), (AD)

Py(R, z) = Pp(R, 2) + O (R, 2). (A2)

where pp; — @y, form an analytic density—potential pair that
captures the high harmonics of the disc, while p, and ®, are
the residual density and potential, which are approximated by
a Legendre polynomial series. The disc density is taken to
be

Pa(R,2) = (R, Ri) f(z,2a)C (R, Ra, Ria, 8R:) (A3)

where X (R, R,) is the disc SD, f(z, z4) is the vertical profile, and
C (R. Ry, R, 4. 8R,) is a truncation function that smoothly sets the
disc density to zero at the disc truncation radius, R, 4 over a width
of 6R,. In GALACTICS, the vertical profile of a stellar disc is given
by

£(z. 24) = sech? (i) , (A4)
2d

where z, is the disc vertical scale height. The sech® function is

often used to describe stellar discs (Kuijken & Dubinski 1995)

as it integrates easily. For GALACTICS, a sech? vertical profile is

particularly helpful for the analytic density—potential pair. For a

Sérsic disc, the disc SD is

R 1/n
2(R, Ry) = Toexp (— (R—d) > , (AS)

where X is the scale density, R, is the disc scale length, and # is the
Sérsic index.

The high harmonic disc density needed to modify GALACTICS to
generate a Sérsic disc can be constructed by generalizing the high
harmonic pairs used for the exponential disc in previous versions
of GALACTICS (Deg et al. 2019; Widrow et al. 2008; Widrow &
Dubinski 2005; Kuijken & Dubinski 1995). The generalized potential
is set to

Pun(R, 2) = =2 E(r) f(2)za » (A6)
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where r is the spherical radius. Then wusing Poisson’s
equation, the corresponding high harmonic density is given
by:
2
Phh(zR,Z) _ d;gr)f(Z)Zd +2¥f(z)zd
4T df @) ¢f@ 1
dr dz dz  zq

where X (r) is the SD calculated using the spherical radius and f(z) is
the vertical profile. All that is then required is calculating the various
derivatives for the Sérsic SD and sech® vertical profile. With the
high harmonic terms in hand, the full density and potential pair can
be calculated by adding these terms to the residual terms calculated
from the Legendre polynomials.

In order for the model to be in equilibrium, it is necessary to set
the velocities of each particle. As in the Deg et al. (2019) version of
GALACTICS, the vertical velocity dispersion profile is set by the disc
thickness. However, the Sérsic disc requires an expansion of the ex-
ponential profile previously used for the radial and tangential velocity
dispersions. At n > 1, Sérsic discs are more centrally concentrated
than exponential discs, which can cause the underlying assumptions
of the GALACTICS DF to no longer hold. To address this issue,
we replace the single exponential dispersion profile with a double
exponential:

Z+ X(r) (A7)

02(R) = afe /R gl RIR2 (A8)

This approach decouples the radial velocity dispersion profile
from the underlying density, but it allows for more realistic galaxy
ICs.

APPENDIX B: FURTHER COMPARISONS WITH
THE MW

The TGO7 simulation presented in Section 4.2 generates a bar and
BP bulge comparable to the MW’s. We therefore compare other
properties of the system to the MW. The upper panel of Fig. Bl
compares the RC of the = 0 and 10 Gyr snapshots to the measured
RC of Eilers et al. (2019). Given that the TG0O7 model has ICs
that are based on Tepper-Garcia et al. (2021), who designed their
simulation to match the RC of Eilers et al. (2019), it is unsur-
prising that model TGO7 initially matches the Eilers et al. (2019)
observational data. As the system evolves and the bar develops, the
TGO7 simulation moves away from the Eilers et al. (2019) RC.
Between R = 5 — 10 kpc, the = 10 Gyr snapshot of model TGO7
has an RC that is ~ 15 — 20 km s~! lower than in the MW. More
importantly, the model RC is rising in this regime, while the Eilers
et al. (2019) RC is decreasing. It is worth noting that the original
Tepper-Garcia et al. (2021) simulation shows a similar change to the
RC with an equal discrepancy to the Eilers et al. (2019) data between
R =5—-10kpc.

Tepper-Garcia et al. (2021) also designed their initial model to
reproduce the MW’s total SD profile (which includes both the stellar
and dark matter densities) measured by Bovy & Rix (2013). Tepper-
Garcia et al. (2021) assumed equal contributions from stars and
dark matter in the Bovy & Rix (2013) SD (which covers a radial
range of ~ 5 —9 kpc). The bottom panel of Fig. B1 shows the
comparison of the TGO7 simulation to the Bovy & Rix (2013)
SD profile (with that same factor of two). As with the RC, the
TGO7 ICs match observations of the MW, but by t = 10 Gyr,
the model has moved away from the starting SD. However, it is
worth noting that both the Bovy & Rix (2013) and TGO7 model
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Figure B1. The initial (solid lines) and final (dashed lines) RC and SD
profiles for the TGO7 model (both stellar and gaseous). The RC data are from
Eilers et al. (2019) and the SD data are from Bovy & Rix (2013).

at t = 10 Gyr show an inflection in the SD profile, but in the case
of model TGO7, there are two distinct inflections; one from a steep
inner slope due to the BP-shaped bulge to a flatter slope around
R ~ 3 kpc and a second, less extreme, one to a steeper slope around
R ~ 7 kpc.

The Eilers et al. (2019) RC covers the outermost regions of the
MW but the inner RC is often probed by the terminal velocity
curve. Fig. B2 explores this inner RC by comparing the TGO7
simulation to the terminal velocity observations of Malhotra (1995).
At t = 0, the TGO7 model is, as expected from the RC shown in
Fig. B1, consistent with observations. As the bar and BP-bulge
form there is a significant rearrangement of material in the inner
region, which is reflected in the larger amplitude of the innermost
terminal velocities at # = 10 Gyr seen in Fig. B2. None the less, the
evolved TGO7 model remains consistent with the Malhotra (1995)
data.

Beyond these, it is possible to compare the TG07 model to local
MW observations, including the Oort constants, local circular speed,
and local SD. These comparisons are listed in Table B1 for the
t =0, 5, and 10 Gyr TGO7 snapshots. There is clearly more work

MNRAS 542, 464485 (2025)
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Figure B2. The initial and final terminal velocity curves of the TGO7
model. The data points are drawn from the terminal velocities of Malhotra
(1995).

to be done to precisely match these local constraints, particularly
the Oort constants and local circular speed. However, given that
the model is not tuned to these constraints, the evolved TGO7
model has local measurements that are remarkably similar to MW
observations.

In addition, we have also calculated the star formation rate (SFR) of
the simulation. Fig. B3 shows the SFR of all simulations that include
gas discs as well as the measured value of 2.0 £ 0.7 Mg, yr~! for the
MW (Elia et al. 2022). In all simulations, the SFR is substantially
below the Elia et al. (2022) value, due to the fact that there is no
replenishment of the gas reservoir in any of the runs. This issue will
arise in any tailored simulation that does not include some form of
gas accretion. In all simulations, there is an initial spike in the SFR at
t = 0 Gyr due to the GALACTICS gas disc initialization, after which
it declines with time.

Table B1. Local measurements of the MW compared to the model TGO7 at three epochs. The rows, from top to bottom,
are the local standard of rest, vy, the Oort A and B constants, and the local SD.

Parameter Measured TGO7 - 0 Gyr TGO7 -5 Gy TGO7 - 10 Gyr
vl (kms~1) 218 £ 6 (Bovy et al. 2012) 224 211 205
A (kms~'kpc™!) 14.8 4 0.8 (Feast & Whitelock 1997) 13.6 11.8 10.2
B (kms~! kpc~!)—12.4 £ 0.6 (Feast & Whitelock 1997) —137 —14.1 —149
2~ (Mgpe™?) 49 £ 9 (Flynn & Fuchs 1994) 38.7 51.8 46.2
— D07 — TGO7
: —— D15 TGO7v2
1077 — D20 ] — TGO7v3
D30
1
>
Q@ 100 B
=
o
L
n
107! 4

t (Gyr)

t (Gyr)

Figure B3. The SFR for the D family (left) and TG family (right) of simulations that include gas discs. The grey shaded region shows the SFR measured in the

MW (Elia et al. 2022).
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APPENDIX C: METASTABILITY

We have interpreted the steady evolution of the bar in the TG07
models as being due to the metastability identified by Sellwood &
Debattista (2006). This metastable state arises because the pattern
speed is briefly forced to rise, which traps the bar into facing
resonances with increasing phase space density. The rising pattern
speed can easily be induced in simulations such as those presented
here by bars funneling gas inwards, which accounts for why a small
fraction of gas is able to have such a strong effect. Sellwood &
Debattista (2006) argued that small perturbations, such as those from
halo substructure, are able to return the bar to a steady evolution. In
the absence of such perturbations, Sellwood & Debattista (2006)
suggested that the bar eventually leaves the metastable state due to
secular evolution at higher order resonances. As we have seen, during
the metastable state when the bar pattern speed is more or less steady,
the bar is still evolving (growing wider) suggesting that such secular
evolution is still active in the background. In Fig. C1 we show that,

Milky Way BP bulge 481
when evolved further, the bars in the TG07 models do indeed leave
the metastable state. In all three models, we find that by 13 Gyr the
bar is once again slowing (upper right panel). In models TG0O7v2 and
TGO7v3, the bar size is rising rapidly, whereas in model TGO7, the
bar size remains roughly constant (upper left panel). Moreover, the
corotation radius is increasing for all models (lower left panel), with
TGO7 and TGO7v2 both crossing the limit of R = 1.4 to become
slow rotators (lower right panel). This variation in bar evolution is
reflective of the stochasticity expected in such cases (Sellwood &
Debattista 2009). We conclude that gas gives rise to a prolonged case
of metastability in which the bar fails to grow and remains fast.

Sellwood & Debattista (2006) also found that the metastable states
in their models were quite sensitive to minor perturbations, whether
from a massive orbiting particle meant to mimic a satellite or small
disc perturbations. In light of this, it seems not unlikely that the
metastable state is quite fragile, and liable to be broken by external
perturbations, such as would arise in a fully cosmological setting.
Confirmation needs further simulations with substructure taken into
account.
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1 1

1
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Figure C1. Corotation analysis for the gas models TG07, TG07v2, and TG07v3. Each plot shows the evolution of the respective variable with time, and has
been smoothed for clarity. From upper left to bottom right: the bar radius Rp,r, the bar pattern speed as computed at each time-step using the algorithm of
Dehnen et al. (2023); the corotation radius Rcr, and R = Rcr/ Rpar- In the bottom-right panel, the canonical division between fast and slow bars (R = 1.4) is
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indicated by the horizontal black dashed line. TGO7v2 and TG07v3 host fast bars for almost all their evolution.

MNRAS 542, 464-485 (2025)

G20z 1snBny 61 U0 150nB Aq 9G16128/¥9V/L/ZFS/PIIME/SEIUL/WOO"dNO-OlWapedk//:Sdny WOy papeojumoq



482  N. Deg et al.

APPENDIX D: SUPPLEMENTAL FIGURES

For completeness, we include a set of supplemental figures show-
ing other aspects of the evolution of the models. Fig. D1 shows
the TG family of models at + =10 Gyr similar to Fig. 2.
Figs D2 and D3 show the time evolution of the bulge line-of-
sight observations compared to Gonzalez et al. (2015) similar to
Fig. 8.

Fig. D4 requires additional commentary as it uses an alternate
normalization than Figs 5 and 8. In this figure, the bulge line-of-
sight curves are individually normalized to their peaks in the / = 0°
panels. This normalization is more suitable for direct comparisons

_ﬁ_ TG00 10 Gyr

y (kpc)

z (kpc)

to the Gonzalez et al. (2015) data. With this normalization Fig. D4
shows that the DO7 and TGO7 models at + = 10 Gyr have similar

shapes. It is also clear that there are features in the Gonzalez et al.
(2015) data that are missed by the various snapshots. For example,

the (0°, —5.5°) panel has a single peak at K > 13, while all the
snapshots have a double peak. This result highlights a few key
points. While the TGO7 model results in a BP bulge with similar
features to those observed in the MW, it is not a perfect match,
which is consistent with the RC and SD results shown in Fig. B1.
Detailed matching will require a larger simulation campaign as well
as a quantification of the uncertainties in these bulge line-of-sight
measurements.

TGO7 10 Gyr

v (kpc)

log £ (Mg pc2)

5

")
o
=
-10 -5 0 5 -10 -5 0
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Figure D1. A comparison of the final outcome of the TG sequence of models. For the (x, z)-plane views, we have imposed a cut |y| < 1 kpc to emphasize the

BP nature of the bulge.
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Figure D2. Similar to Fig. 5 for model TG07v2.
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Figure D3. Similar to Fig. 5 for model TGO7v3.
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Figure D4. Similar to Fig. 8 except each curve is normalized individually to their own peak in the / = 0° panels (rather than normalizing to the singular peak).

Additionally, this plot includes the DO7 model at = 10 Gyr for comparison.
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